Grieving environmental scientists need support

Rates of environmental destruction are greater today than at any previous point in human history (1). This loss of valued species, ecosystems, and landscapes triggers strong grief responses in people with an emotional attachment to nature (2). However, environmental scientists are presented with few opportunities to address this grief professionally.

Environmental scientists tend to respond to degradation of the natural world by ignoring, suppressing, or denying the resulting painful emotions while at work (3). The risks that this entails are profound. Emotional trauma can substantially compromise self-awareness, imagination, and the ability to think coherently (4). As Charles Darwin put it, one “who remains passive when overwhelmed with grief loses [the] best chance of recovering elasticity of mind” (5).

Academic institutes must allow environmental scientists to grieve well and thus emerge stronger from traumatic experiences to discover new insights about our rapidly changing world. Much can be learned from other professions in which distressing circumstances are commonplace, such as health care, disaster relief, law enforcement, and the military. In these fields, well-defined organizational structures and active strategies exist for employees to anticipate and manage their emotional distress (6). Effective systems can facilitate healthy grieving processes, enhance psychological recovery, and reduce the risk of long-term mental health impacts, potentially leading to better practice, decision-making, and resiliency in future periods of trauma (7–10). Improved psychosocial working environments for scientists might include systematic training of employees, early-intervention debriefing after disturbing events, social support from colleagues and managers, and therapeutic counseling.

The pervasive illusion that scientists must be dispassionate observers is dangerously misguided. Rather, grief and post-traumatic recovery can strengthen resolve and inspire scientific creativity. To understand and find solutions for our increasingly damaged natural ecosystems, environmental scientists must be allowed to cry and be supported as they move forward. Timothy A. C. Gordon, Andrew N. Radford, Stephen D. Simpson

Tibetan hot-spring snakes under threat

Endemic to the Tibetan Plateau, the hot-spring snake (Thermophis baileyi) is a relict species that depends on the heat in geothermal zones to survive (1–4). The only snake species found on the Changthang Plateau (5), this sole survivor of the suborder Serpentes (5) has lived for millions of years (2, 3) in natural caves, stone seams, and crannies (6). These shelters, along with wetlands harboring the snake’s diet (tadpoles, toads, frogs, and fish) (7), are essential for the survival of the hot-spring snake in this high, cold, and arid habitat.

The local Tibetans believe that hot-spring water can cure many diseases and that the hot-spring snake is the patron saint of these waters [e.g., (8)]. In recent years, most of the hot springs in the areas where the snakes live have been put to use for commercial exploitation (6). Although Tibetans do not directly hurt snakes, their modifications to the natural stone topology and wetland landscape have unwittingly resulted in the loss of the snake’s shelters and food (6). In turn, these local snake populations face extinction (6). The construction of roads and thermoelectric plants is even more devastating for the species (6). It is estimated that a total of 15 billion yuan (equivalent to US$2.1 billion) will eventually be invested in Tibet for the comprehensive exploitation of geothermal resources (9). The hot-spring snake urgently needs help.

It is possible to protect and restore hot-spring–snake populations without compromising the economic development and well-being of Tibetans. To do so, both the government and the public must give more attention and financial support to this species. Scientists must conduct comprehensive and detailed population resurveys, and natural shelters must be protected or artificial snake dens built. Stillwater wetlands should be restored and frogs and toads reintroduced to the habitats. Finally, it will be crucial to monitor the snake population before, during, and after any construction projects involving geothermal resources.

Song Huang11 and Lifang Peng12

Recovered Tibetan antelope at risk again

The Tibetan antelope (Pantholops hodgsonii) is an iconic species endemic to the Tibetan Plateau and is the last long-distance migratory ungulate in the region (1). From 1950 to the early 1990s, the species’ population declined by 90% due to rampant illegal poaching (2). Thanks to the joint conservation efforts of the Chinese government and international community since the late 1990s, the population has recovered to 200,000 individuals (3). However, the Tibetan plateau is currently experiencing accelerating climate change (4), and the antelope now faces severe climate change–related threats.

Every summer, tens of thousands of antelopes from multiple wintering areas migrate hundreds of kilometers to a shared calving site at Zonag Lake in Hoh Xil Nature Reserve (5). However, in September 2011, a combination of heavy precipitation, increased glacier melting, and permafrost thawing increased water levels, causing the natural dam containing Zonag Lake to burst (6). The resulting flood formed deep-cutting riverbanks along the traditional antelope migration route, flowing eastward and converging on downstream Yanhu Lake, known for its high salinity (7). A potential spillover of Yanhu Lake is expected in the next 1 to 2 years (6). Meanwhile, the drained Zonag Lake’s area is 40% smaller than its original size (8).

These changes to the landscape have serious ramifications for antelope survival. The newly formed riverbanks obstruct the traditional migration route. Antelopes have been observed diverging from the route and are forced to calve along the shore of the downstream Kusai Lake (8). The few individuals that have managed to migrate to the Zonag Lake have had limited access to water surfaces because of its decreased size. Disruptions to migration routes and calving sites are known to cause decreased reproductive success and fitness in ungulate populations (9, 10). If Yanhu Lake were to spill over, the high salinity would lead to catastrophic degradation of the Hoh Xil grassland ecosystem, upon which Tibetan antelopes rely for survival. Extreme climate-related hazards to wildlife and ecosystems, now occurring worldwide, must be recognized and addressed decisively. To ensure the continued conservation of Tibetan antelopes, the ecological integrity of their current home range must be preserved.

We call on policy-makers to facilitate scientific monitoring and research, explore evidence-based management options, and act swiftly to save one of China’s historic conservation success stories.

Jie Pei1,2, Li Wang3, Wening Xu4, David J. Kurz5, Jing Geng1,4, Huajun Fang3, Xinlei Guo4,*, Zheng Niu6,7*

1The State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100049, China. 2Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720–3114, USA. 3Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
*Corresponding author. E-mail: xinlei.guo@inra.fr (X.G.); nizheng@radi.ac.cn (Z.N.)

REFERENCES AND NOTES

10.1126/science.aay9077

TECHNICAL COMMENT ABSTRACTS
Comment on “Cultural flies: Conformist social learning in fruitflies predicts long-lasting mate-choice traditions”
Stephen Thornquist and Michael Crickmore
The claims of Danchin et al. (Research Articles, 30 November 2018, p. 1025) regarding long-lasting mate preference based on conformity may result from systematic experimental error. Even if mate copying were a genuine phenomenon, it is unlikely to result in persisting culture in the wild.
Full text: dx.doi.org/10.1126/science.aaw8012

Response to Comment on “Cultural flies: Conformist social learning in fruitflies predicts long-lasting mate-choice traditions”
Arnaud Pocheville, Sabine Nöbel, Guillaume Isabel, Etienne Danchin
Thornquist and Crickmore claim that systemic experimental error may explain the results of Danchin and colleagues. Their claim rests on mistakes in their analyses, for which we provide corrections. We reassert that conformity in fruitflies predicts long-lasting mate-preference traditions.
Full text: dx.doi.org/10.1126/science.aaw9549
Grieving environmental scientists need support
Timothy A. C. Gordon, Andrew N. Radford and Stephen D. Simpson

Science 366 (6462), 193.
DOI: 10.1126/science.aaz2422

http://science.sciencemag.org/content/366/6462/193.1

This article cites 9 articles, 1 of which you can access for free
http://science.sciencemag.org/content/366/6462/193.1#BIBL

http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service