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Many vertebrates eavesdrop on alarm calls of other species, as well as
responding to their own species’ calls, but eavesdropping on heterospecific
alarm calls might be harder than conspecific reception when environmental
conditions make perception or recognition of calls difficult. This could occur
because individuals lack hearing specializations for heterospecific calls, have
less familiarity with them, or require more details of call structure to identify
calls they have learned to recognize. We used a field playback experiment
to provide a direct test of whether noise, as an environmental perceptual
challenge, reduces response to heterospecific compared to conspecific
alarm calls. We broadcast superb fairy-wren (Malurus cyaneus) and white-
browed scrubwren (Sericornis frontalis) flee alarm calls to each species with
or without simultaneous broadcast of ambient noise. Using two species
allows isolation of the challenge of heterospecific eavesdropping indepen-
dently of any effect of call structure on acoustic masking. As predicted,
birds were less likely to flee to heterospecific than conspecific alarm calls
during noise. We conclude that eavesdropping was harder in noise, which
means that noise could disrupt information on danger in natural eavesdrop-
ping webs and so compromise survival. This is particularly significant in a
world with increasing anthropogenic noise.
1. Introduction
Alarm calls warning of predators are important for many mammals and birds,
with individuals often responding not only to conspecific alarm calls but
also eavesdropping on those of other species [1,2]. Listeners respond with anti-
predator behaviour appropriate to the type of alarm call, which likely enhances
survival [3,4]. Heterospecific eavesdropping is taxonomicallywidespread, provid-
ing extra information on predators [5,6]. However, eavesdropping on other
species’ calls has limitations, such as whether calls are familiar or whether they
indicate a predator relevant to the listening species [7], and there can be reduced
response even to familiar and relevant heterospecific alarm calls compared to con-
specific equivalents [8,9]. Herewe consider if environmental noise imposes greater
limitations on response to alarm calls of other species compared to one’s own.

Heterospecific eavesdropping may be harder than conspecific reception for
several, not mutually exclusive, reasons. First, senders target signals to specific
receivers, such as by orienting towards or approaching them, but eavesdroppers
will not benefit from these adaptations [10,11]. For eavesdroppers, alarm calls
therefore come fromunpredictable distances and directions, requiring extra atten-
tion to detect calls [12]. Second, different species have different hearing abilities,
and individuals can have species-specific perceptual specializations for their own
vocalizations yet be poor at detecting other species’ calls [13]. For example, great
tits (Parus major) are more sensitive to higher frequencies than sparrowhawks
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(Accipiter nisus), making eavesdropping on great tit alarm calls
difficult for sparrowhawks [14]. Such scenarios may also apply
to species that eavesdrop on others for information about
shared predators. Third, eavesdroppers can be less familiar
with heterospecific compared to conspecific calls, potentially
making it harder to recognize heterospecific calls that vary
among individuals or are challenging to perceive [12]. For
instance, European starlings (Sturnus vulgaris) were better at
detecting familiar than unfamiliar songs during background
noise [15]. Finally, individuals can respond to key features
of conspecific alarm calls, while eavesdropping appears to
require recognizing the overall structure of calls [16,17]. For
example, superb fairy-wrens (Malurus cyaneus) use peak
frequency to recognize conspecific aerial alarm calls, and so
they also flee to unfamiliar aerial alarm calls if the peak fre-
quency is similar to their own calls (9 kHz) [17]. However,
while they can learn to recognize and flee toNewHolland hon-
eyeater (Phylidonyris novaehollandiae) alarm calls, which have
different frequencies, they failed to respond if the calls were
reversed but retained their peak frequency [18]. This suggests
that eavesdropping requires more details of the signal, which
may be obscured in poor conditions for listening.

Environmental noise provides a general constraint on
acoustic communication [19,20], and so may exacerbate the
challenge of heterospecific eavesdropping. Environmental
noise is unavoidable, and worsening anthropogenic noise
can threaten animal fitness, including by compromising
reception of calls [19–21]. In natural environments, the
effective range of a signal is often determined by noise and
not hearing sensitivity [21,22]. Noise can reduce response
by wild individuals to conspecific alarm calls, including by
superb fairy-wrens and great tits [23,24], and to heterospecific
alarm calls, as seen in dwarf mongooses (Helogale parvula)
and Northern cardinals (Cardinalis cardinalis) [25,26]. How-
ever, we are aware of no field study testing whether noise
affects heterospecific eavesdropping more severely than
reception of conspecific calls. This is an important issue
because noise may compromise the information web and so
reduce the survival of individuals within communities.

We investigated whether noise constrains heterospecific
eavesdropping on alarm calls more than conspecific reception
of alarm calls. Our study species, superb fairy-wrens and
white-browed scrubwrens (Sericornis frontalis), eavesdrop on
each other’s alarm calls [27]. Previous work in quiet conditions
found that each species almost always fled to alarms from both
species when broadcast at mean amplitudes, but were slightly
less likely to respond to heterospecific alarms when amplitude
was reduced [8,28]. This result is consistent with our predic-
tion that heterospecific eavesdropping would become more
difficult than conspecific alarm reception during noise.
2. Material and methods
We studied fairy-wrens and scrubwrens in theAustralianNational
Botanic Gardens (−35.279°S, 149.109°E), Canberra. All fairy-wrens
and most scrubwrens were colour-banded for long-term studies
[29,30]. These small passerines have overlapping territories, and
can join mixed-species flocks together [28,31,32]. They are vulner-
able to the same predators, including locally common collared
sparrowhawks (Accipiter cirrhocephalus) and pied currawongs
(Strepera graculina) [18]. To warn of flying predators, both species
give aerial alarm calls composed of repeated elements, each
about 100 ms, with fairy-wren elements of higher peak frequency
than those of scrubwrens (mean ± s.d.: 9.1 ± 0.4 versus 7.1 ±
0.4 kHz), and scrubwren elements having two bands at different
frequencies (figure 1) [28]. For both species, calls with four
elements prompt immediate flight to cover [28,33]. We conducted
playbacks on adults and young at least one month old, so all were
familiar with alarm calls from both species [30].

Our playback experiment investigated the effect of noise
on heterospecific eavesdropping and conspecific reception, by
broadcasting alarm calls of fairy-wrens and scrubwrens to both
species either with or without broadcast of noise. Playback treat-
ments were matched by location to control for any local variation
in sound transmission and background noise. We tested fairy-
wrens and scrubwrens at 16 locations within the study site,
with each species at each location receiving all five playback
treatments: noise alone (a control) and four alarm-call treatments,
defined by the presence of noise (included or not) and caller
species (fairy-wren or scrubwren). Fairy-wrens can move across
locations but we ensured no individual received the same treat-
ment more than once. We used this cross-species design to
control for any characteristics that could make alarm calls of
one species more vulnerable to acoustic masking. For example,
if fairy-wrens fled less to scrubwren alarms than their own in
noise, it could simply be that scrubwren alarms are more vulner-
able to masking. But if this was so, scrubwrens would also flee
less to their own alarms during noise. By contrast, we predict
that noise will make each species less responsive to heterospecific
than conspecific alarms.

Playback sounds were prepared using the same methods as
in Zhou et al. [23]. In brief (details in electronic supplementary
material), we made 16 playbacks of four-element alarm calls of
each species, each from a different individual. Calls were broad-
cast at 52 dB SPL re 20 µPa (average amplitude of individual
elements) at 10 m, which is about the mean natural amplitude
for each species [28]. We combined these alarm calls with 16
ambient-noise sound files, each from separate recordings from
the field site and filtered to 6–10 kHz, which covers the peak fre-
quencies of alarm calls from both species (figure 1). Noise lasted
for 20 s, fading in for 7 s and out for 5 s to avoid abrupt changes.
Noise was calibrated to 52 dB SPL at 10 m, because at this level
birds slightly reduced their response to conspecific alarm calls
[23]. Furthermore, this level is well above environmental noise
on the dry, still, winter days when playbacks were carried out
(mean ± SD measured immediately after each playback: 38.3 ±
2.9 dB SPL; range 30.4–46.3 dB SPL; n = 159, one measurement
missing; details below), but below maximum natural levels
recorded at the study site of 54–64 dB SPL on windy days. For
treatments including noise, the alarm and noise audio files
were mixed into one file, with alarm calls starting during the
stable period of noise.

Playbacks were carried out from June to August 2017.
Playback methods followed our previous work on these species
[18,23,28,34], in which we use a mobile playback system consist-
ing of a Roland Edirol R-05 HR digital recorder, a custom
amplifier and a Peerless 810921 tweeter loudspeaker (frequency
response 2–11 kHz). Sixteen locations were selected in the Bota-
nic Gardens for each species, featuring open areas where birds
frequently foraged. For each playback, a focal individual was fol-
lowed by the observer (Y.Z.) from about 10 m, and had at least
5 min of undisturbed foraging before playback. If there were
natural alarm calls, the clock was reset for another 5 min. Play-
backs were carried out when there were no heterospecifics
nearby, and the focal bird was foraging on the ground about
10 m from the observer and 0.5–10 m from cover. These are
social birds, and conspecifics were present during 76 out of 160
playbacks, but the focal bird was always the closest individual.
Furthermore, we found no effect of conspecific presence or dis-
tance to cover on the likelihood of focal birds fleeing to alarm
calls (electronic supplementary material). We ensured there
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was no obstruction between the loudspeaker and the focal bird
that could affect sound transmission or obscure our view of the
bird’s response. Playbacks were carried out in relatively quiet
periods when there was no prominent background sound, such
as from aircraft or nearby vehicles. Following playback, the
observer recorded whether the focal bird fled to cover, the
almost invariant response by both species to playback of multi-
element aerial alarm calls broadcast at mean amplitude under
quiet conditions [18,23]. Fleeing was defined as stopping fora-
ging, and flying immediately and directly to cover in nearby
vegetation. Then, after recording the bird’s response, the natural
background sound was audio-recorded for 30 s to obtain an esti-
mate of background noise level, using the same equipment used
to record the noise for playbacks. The background noise level
was measured using average power function in Raven 1.5 Pro
and calibrated against a tone of known amplitude.

We used McNemar tests to compare the responses to hetero-
specific and conspecific alarm calls with and without noise.
McNemar tests compare the difference in probabilities of paired
dichotomous variables, in our case flee versus not flee, matched
by location and receiver species [35,36].We analysed the playbacks
to fairy-wrens and scrubwrens together with 32 location-species
pairs, because any effect of receiver species was controlled in the
crossover experimental design. The effect of location and treatment
orderwere also controlled as the experiment used a complete block
design. McNemar tests are suitable when probabilities are on
different parts of the 0–1 spectrum, as in our data, which is proble-
matic for binomialmixedmodels using log odds ratios [37,38]. Our
experiment was motivated by our previous results and was
designed to test the directional hypothesis that heterospecific
eavesdropping is harder than conspecific reception, especially
during noise. Nonetheless, we follow a common but not universal
convention of using two-tailed tests [36,39,40]. First, we examined
responses within noisy and quiet conditions separately, predicting
a reduced response to heterospecific compared to conspecific
alarms, particularly during noise. Second, we directly compared
responses in noisy versus quiet conditions, predicting that the
reduced response to heterospecific alarms would be greater in
noise compared to quiet conditions.
3. Results
As predicted, noise disproportionately affected response of
birds to heterospecific compared to conspecific alarm calls
(figure 2). Noise itself appeared to have minimal impact on
birds; for noise-alone playbacks, no bird fled during the
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stable period of noise (when the alarm call potentially occurred
in the alarm-with-noise treatments), and only two birds fled to
cover at the onset of noise (electronic supplementary material,
table S1). Without noise, almost all birds fled to cover after
alarm calls and therewas no significant difference between flee-
ing to conspecific and heterospecific alarm calls (McNemar test,
exact two-tailed: three fled to conspecific but not heterospecific
alarm calls versus one the opposite, p = 0.625; electronic sup-
plementary material, tables S1, S2). However, birds fled less
to heterospecific than conspecific alarm calls when noise
was broadcast simultaneously (11 fled to conspecific but not
heterospecific alarm calls, with only one the opposite,
p = 0.006; electronic supplementary material, tables S1, S2).
Furthermore, there was a strong trend that the difference
between fleeing to heterospecific and conspecific alarm calls
was larger when noise was played than not played (10 birds
showed a greater reduction in response in noisy conditions
compared to quiet conditions versus three the opposite,
p = 0.092; electronic supplementary material, tables S1, S2).
4. Discussion
Noise compromised response to heterospecific alarm calls
more than to conspecific alarms. When noise was not broad-
cast, almost all birds fled to alarm calls from both species,
and the proportions fleeing to conspecific and heterospecific
alarms were similar. However, during noise individuals
were more likely to flee to conspecific alarms than those
from the other species. Furthermore, the difference of fleeing
probabilities between conspecific and heterospecific alarms
tended to be greater with noise than without noise, and the
strong trend was consistent with our directional hypothesis.
To our knowledge, this is the first experimental test of the
effect of noise on heterospecific eavesdropping compared to
conspecific alarm-call reception.

Our cross-species experiment allowed us to distinguish the
constraint of heterospecific eavesdropping from the possibility
that differences in call structure alone affected masking and
response. Our results show that, as predicted, heterospecific
eavesdropping was more difficult than conspecific communi-
cation in noisy conditions. By contrast, a previous laboratory
study on budgerigars (Melopsittacus undulatus) and zebra
finches (Taeniopygia guttata) found that contact call structure
affected hearing thresholds in noise, not whether the call was
from a heterospecific or conspecific [41]. In that study, call
structures were very different between species, and both
species were better at detecting calls of budgerigars than
zebra finches during noise playback, potentially because of
differences in tonality and peak amplitude [42]. Our exper-
iment was carried out in the wild and the calls were similar
in structure, and so likely to be similarly vulnerable to mask-
ing. This may explain why we detected the pattern of
reduced response to heterospecific alarm calls, rather than an
effect of call structure.

Species-specific hearing adaptions, the more challenging
recognition of learned calls or selective attention to conspecific
calls most likely explain our results. First, superb fairy-wrens
have higher frequency aerial alarm calls (9 kHz peak fre-
quency) than those of white-browed scrubwrens (7 kHz).
Each species’ perceptual abilities may be best at detecting the
prominent frequency of conspecific alarms during noise.
Second, fairy-wrens and scrubwrens learn to recognize the
other species’ aerial alarm calls [18,30,43] and recognizing
learned calls is likely to be harder in noise. Learned recognition
of heterospecific calls appears to require recognition of acoustic
details, such as duration, interval and frequency modulation,
rather than key features like peak frequency [16,17]. Conse-
quently, noise may mask acoustic details that are important
for heterospecific eavesdropping but not for conspecific recep-
tion that may rely on simple features resistant to degradation
[8,17]. Third, animals typically attend to the most relevant
information amongst simultaneous sources [44]. Selective
attention might therefore also cause a greater response to
conspecific than heterospecific calls during noise.

In conclusion, our study shows that eavesdropping was
harder than conspecific reception during the challenge of
environmental noise. If this finding applies broadly among
species, then noise will have a disproportionate effect on het-
erospecific eavesdropping compared to conspecific reception,
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and thereby compromise the ‘information web’ in natural
communities [1,45,46]. Our experiment was designed to
mimic a natural situation, but could potentially overestimate
or underestimate the effect of noise in natural communities.
On the one hand, we used a single loudspeaker so that the
alarm call and noise came from the same direction, but in
natural communities the signal and noise could come
from different directions, which could reduce the strength
of masking (‘spatial release of masking’; [47]). On the other
hand, we directed our playbacks towards nearby focal indi-
viduals, whereas in natural circumstances only conspecific
alarm calls are likely to be directed to a specific listener.
By contrast, heterospecific calls come from unpredictable
distances and directions, with calls often attenuated and
degraded, so potentially exacerbating the effects of noise
[1]. Consequently, our experiment may have underestimated
the relative difficulty of heterospecific eavesdropping
during noise. Given the conservation challenges of increasing
anthropogenic noise [47–50], understanding the effects on
different species in the community is ecologically important
for assessing the broad impact of noise and predicting
potential outcomes of noise exposure.
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