
Supplementary Information Appendices A–C 
Altruism in a volatile world 

Appendix A | Derivation 

A1 | General stochastic Hamilton’s rule 

This Appendix provides a derivation of Inequality (1) in the main text. We start with the general condition 

for evolutionary change, the Price equation31. Note that the bet-hedging literature often makes use of 

the geometric mean approximation (which we derive from the stochastic Hamilton’s rule in section A3 

below); unless otherwise stated, when we use the unqualified term ‘mean’ we refer to the arithmetic 

mean. 

The change in the mean value 𝑧̅ of a trait in a population is a function of the reproductive success 𝑤𝑥 

associated with the trait value 𝑧𝑥 (across individuals 𝑥 ∈ 𝑁) and the average reproductive success �̅� 

across the population: 

Δ𝑧̅ = ℂ𝑥 [𝑧𝑥,
𝑤𝑥

�̅�
] + 𝔼𝑥 [(

𝑤𝑥

�̅�
) Δ𝑧𝑥] (𝐴1) 

ℂ𝑥 [𝑧𝑥,
𝑤𝑥

�̅�
] is the component of evolutionary change due to selection (the ‘selection covariance’). The 

fraction 
𝑤𝑥

�̅�
 within this covariance is individual 𝑥’s relative fitness, which captures the intuition that natural 

selection favours the alleles that enable their bearer to outcompete conspecifics. 𝔼𝑥 [(
𝑤𝑥

�̅�
) Δ𝑧𝑥] deals

with non-selective contributions to evolutionary change (such as biased transmission of alleles between 

parents and offspring). We are interested in the action of selection, so we will focus on the first term.  

The Price equation in its form in Equation (A1) is retrospective: it looks back over the change that has 

happened and provides a convenient way of dividing it into its contributory components. A prospective 

(forward-looking) Price equation, on the other hand, would be an expectation of Δ𝑧̅ over the possible 

states of nature into which the population may enter. Δ𝑧̅ might be very different in a drought than in a 

year of plenty. Let the current environmental conditions be denoted 𝜋, of a set of possible environmental 

conditions 𝛱 into which the population may enter. Grafen22 and later Rice32 have noted that the 

expectation over 𝛱 of the selection covariance provides the information required for the expectation of 

Δ𝑧̅: 

𝔼𝜋[Δ𝑧̅] = ℂ𝑥 [𝑧𝑥 , 𝔼𝜋 [
𝑤𝑥

�̅�
]] (𝐴2)  
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We are interested in the fate of genes in the population. The ‘trait’ we address is the organism’s genetic 

value, 𝐺𝑥, a quantity that captures the alleles that an individual carries (allele frequency within the 

individual). Accordingly, 𝑧𝑥 = 𝐺𝑥 . See Extended Data Table E1 for a list of all parameters used in the 

model. 

Both 𝑤𝑥 and �̅� are random variables with their own probability distributions across environmental 

states. Equation (A2) states that the expected change in �̅� in the population will depend on how closely 

genetic values covary with the expectation of relative fitness. This fraction is the expectation of a ratio of 

random variables, which is not equal to the ratio of the expectations of each variable when 𝑤𝑥 and �̅� are 

correlated: 

𝔼𝜋 [
𝑤𝑥

�̅�
] ≠

𝔼𝜋[𝑤𝑥]

𝔼𝜋[�̅�]
(𝐴3) 

The expectation of a ratio of random variables can be expressed using the Taylor series3,32, where the 

notation ≪𝑘 �̅� ≫ denotes the 𝑘th central moment of �̅� across 𝛱 and ≪ 𝑤𝑥 ,𝑘 �̅� ≫ denotes the 𝑘th

mixed moment of 𝑤𝑥 and �̅� across 𝛱 (assuming �̅� < 2𝔼𝜋[�̅�]): 

𝔼𝜋 [
𝑤𝑥

�̅�
] =

𝔼𝜋[𝑤𝑥]

𝔼𝜋[�̅�]
+ ∑(−1)𝑘

𝔼𝜋[𝑤𝑥] ≪𝑘 �̅� ≫ +≪ 𝑤𝑥,𝑘 �̅� ≫

𝔼𝜋[�̅�]𝑘+1

∞

𝑘=1

(𝐴4) 

As Queller33 does for relative fitness in a non-stochastic environment, we express the individual’s 

expected reproductive success (number of surviving offspring) in a stochastic environment, 𝔼𝜋[𝑤𝑥], in 

the form of a multiple regression equation. Part of an individual’s reproductive success will be due to the 

genes it carries itself: thus, one partial regression slope must relate the individual’s genetic value 𝐺𝑥 to its 

expected reproductive success (𝛽𝔼𝜋[𝑤𝑥],𝐺𝑥
). Another part of its reproductive success will be due to the

genetic value 𝐺𝑦 of actors serving as social partners (𝛽𝔼𝜋[𝑤𝑥],𝐺𝑦
). The expected reproductive success of

individual 𝑥 is: 

𝔼𝜋[𝑤𝑥] = 𝛼𝔼𝜋[𝑤𝑥] + 𝛽𝔼𝜋[𝑤𝑥],𝐺𝑥
𝐺𝑥 + 𝛽𝔼𝜋[𝑤𝑥],𝐺𝑦

𝐺𝑦 + 𝜖𝔼𝜋[𝑤𝑥] (𝐴5) 

The intercept of the regression slope (𝛼𝔼𝜋[𝑤𝑥]) is the ‘baseline’ expected reproductive success the

organism expects before taking into account its own genotype and that of its social partners. 𝜖𝔼𝜋[𝑤𝑥]

captures noise around the regression line. 

Equation (A4) contains the central moments characterising the probability distribution of the average 

reproductive success in the population (�̅�) across environmental states: 

≪𝑘 �̅� ≫ = 𝔼𝜋[(�̅� − 𝔼𝜋[�̅�])𝑘] (𝐴6) 

WWW.NATURE.COM/NATURE | 2

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature25965



3 

The shape of the distribution from which a focal individual samples its reproductive success appears in 

Equation (A4) within the mixed moments: 

≪ 𝑤𝑥 ,𝑘 �̅� ≫= 𝔼𝜋[(𝑤𝑥 − 𝔼𝜋[𝑤𝑥])(�̅� − 𝔼𝜋[�̅�])𝑘] (𝐴7) 

The most familiar of the mixed moments is the covariance, ℂ𝜋[𝑤𝑥, �̅�], which arises when 𝑘 = 1. Higher 

mixed moments, such as the coskewness and cokurtosis, appear at higher values of 𝑘. Because each 

mixed moment can potentially be influenced by the organism’s own genotype and its social partners, we 

can describe each one using linear regression equations: 

≪ 𝑤𝑥 ,𝑘 �̅� ≫= 𝛼≪𝑤𝑥,𝑘�̅�≫ + 𝛽≪𝑤𝑥,𝑘�̅�≫,𝐺𝑥
𝐺𝑥 + 𝛽≪𝑤𝑥,𝑘�̅�≫,𝐺𝑦

𝐺𝑦 + 𝜖≪𝑤𝑥,𝑘�̅�≫ (𝐴8) 

We now substitute these regression slopes into selection covariance of the Price equation (Equation 

A2): 

𝔼𝜋[Δ�̅�]

= ℂ𝑥 [𝐺𝑥, (
𝛼𝔼𝜋[𝑤𝑥] + 𝛽𝔼𝜋[𝑤𝑥],𝐺𝑥

𝐺𝑥 + 𝛽𝔼𝜋[𝑤𝑥],𝐺𝑦
𝐺𝑦 + 𝜖𝔼𝜋[𝑤𝑥]

𝔼𝜋[�̅�]

+ ∑(−1)𝑘
(𝛼𝔼𝜋[𝑤𝑥] + 𝛽𝔼𝜋[𝑤𝑥],𝐺𝑥

𝐺𝑥 + 𝛽𝔼𝜋[𝑤𝑥],𝐺𝑦
𝐺𝑦 + 𝜖𝔼𝜋[𝑤𝑥]) ≪𝑘 �̅� ≫ +𝛼≪𝑤𝑥,𝑘�̅�≫ + 𝛽≪𝑤𝑥,𝑘�̅�≫,𝐺𝑥

𝐺𝑥 + 𝛽≪𝑤𝑥,𝑘�̅�≫,𝐺𝑦
𝐺𝑦 + 𝜖≪𝑤𝑥,𝑘�̅�≫

𝔼𝜋[�̅�]𝑘+1

∞

𝑘=1

) ] 

(𝐴9) 

The expected value of the population average reproductive success across states of nature is a constant 

(i.e. for all individuals 𝑥 ∈ 𝑁, it is identical). As a constant, it does not covary with the genetic values of 

individuals, so can be moved outside of the selection covariance (a covariance with a constant is by 

definition 0). By the linearity rule for covariances ℂ[𝑋, 𝑌 + 𝑍] = ℂ[𝑋, 𝑌] + ℂ[𝑋, 𝑍], we also expand the 

selection covariance: 

𝔼𝜋[Δ�̅�] =
1

𝔼𝜋[�̅�]
(ℂ𝑥[𝐺𝑥, 𝛼𝔼𝜋[𝑤𝑥] ] + ℂ𝑥[𝐺𝑥, 𝛽𝔼𝜋[𝑤𝑥],𝐺𝑥

𝐺𝑥 ] + ℂ𝑥 [𝐺𝑥, 𝛽𝔼𝜋[𝑤𝑥],𝐺𝑦
𝐺𝑦 ] + ℂ𝑥[𝐺𝑥, 𝜖𝔼𝜋[𝑤𝑥] ]

+ ∑
(−1)𝑘

𝔼𝜋[�̅�]𝑘
(ℂ𝑥[𝐺𝑥, 𝛼𝔼𝜋[𝑤𝑥] ≪𝑘 �̅� ≫] + ℂ𝑥[𝐺𝑥, 𝛽𝔼𝜋[𝑤𝑥],𝐺𝑥

𝐺𝑥 ≪𝑘 �̅� ≫]

∞

𝑘=1

+ ℂ𝑥 [𝐺𝑥, 𝛽𝔼𝜋[𝑤𝑥],𝐺𝑦
𝐺𝑦  ≪𝑘 �̅� ≫] + ℂ𝑥[𝐺𝑥, 𝜖𝔼𝜋[𝑤𝑥] ≪𝑘 �̅� ≫] + ℂ𝑥 [𝐺𝑥, 𝛼≪𝑤𝑥,𝑘�̅�≫ ]

+ ℂ𝑥 [𝐺𝑥, 𝛽≪𝑤𝑥,𝑘�̅�≫,𝐺𝑥
𝐺𝑥 ] + ℂ𝑥 [𝐺𝑥, 𝛽≪𝑤𝑥,𝑘�̅�≫,𝐺𝑦

𝐺𝑦 ] + ℂ𝑥 [𝐺𝑥, 𝜖≪𝑤𝑥,𝑘�̅�≫ ]))

(𝐴10) 

ℂ𝑥[𝐺𝑥, 𝛼𝔼𝜋[𝑤𝑥] ], ℂ𝑥[𝐺𝑥, 𝛼𝔼𝜋[𝑤𝑥] ≪𝑘 �̅� ≫] and ℂ𝑥 [𝐺𝑥, 𝛼≪𝑤𝑥,𝑘�̅�≫ ] can all be dropped from the

equation, because they involve the covariances of the variable 𝐺𝑥 with a constant. Similarly, we follow 
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Queller33,34 in assuming that there  is no covariance between individual genetic value and (in our case) 

the three residual error terms: ℂ𝑥[𝐺𝑥, 𝜖𝔼𝜋[𝑤𝑥] ] = ℂ𝑥[𝐺𝑥, 𝜖𝔼𝜋[𝑤𝑥] ≪𝑘 �̅� ≫] = ℂ𝑥 [𝐺𝑥, 𝜖≪𝑤𝑥,𝑘�̅�≫ ] = 0.

The partial regression slopes are constants so can be moved outside of their respective covariances with 

𝐺𝑥. We can now express the condition for an expected increase in �̅� (i.e. 𝔼𝜋[Δ�̅�] > 0) as follows:

1

𝔼𝜋[�̅�]
(𝛽𝔼𝜋[𝑤𝑥],𝐺𝑥

ℂ𝑥[𝐺𝑥, 𝐺𝑥 ] + 𝛽𝔼𝜋[𝑤𝑥],𝐺𝑦
ℂ𝑥[𝐺𝑥, 𝐺𝑦 ]

+ ∑
(−1)𝑘

𝔼𝜋[�̅�]𝑘
(

≪𝑘 �̅� ≫ 𝛽𝔼𝜋[𝑤𝑥],𝐺𝑥
ℂ𝑥[𝐺𝑥, 𝐺𝑥] + ≪𝑘 �̅� ≫ 𝛽𝔼𝜋[𝑤𝑥],𝐺𝑦

ℂ𝑥[𝐺𝑥, 𝐺𝑦 ]

+𝛽≪𝑤𝑥,𝑘�̅�≫,𝐺𝑥
ℂ𝑥[𝐺𝑥, 𝐺𝑥 ] + 𝛽≪𝑤𝑥,𝑘�̅�≫,𝐺𝑦

ℂ𝑥[𝐺𝑥, 𝐺𝑦 ]
)

∞

𝑘=1

)

> 0

(𝐴11) 

 Dividing both sides of Inequality (A11) by the variance in genetic value across individuals, 𝕍𝑥[𝐺𝑥], 

obtains relatedness33,35 (𝑟 ≡
ℂ𝑥[𝐺𝑦,𝐺𝑥]

𝕍𝑥[𝐺𝑥]
): 

1

𝔼𝜋[�̅�]
(𝛽𝔼𝜋[𝑤𝑥],𝐺𝑥

+ 𝑟𝛽𝔼𝜋[𝑤𝑥],𝐺𝑦
+ ∑

(−1)𝑘

𝔼𝜋[�̅�]𝑘
(

≪𝑘 �̅� ≫ (𝛽𝔼𝜋[𝑤𝑥],𝐺𝑥
+ 𝑟𝛽𝔼𝜋[𝑤𝑥],𝐺𝑦

)

+𝛽≪𝑤𝑥,𝑘�̅�≫,𝐺𝑥
+ 𝑟𝛽≪𝑤𝑥,𝑘�̅�≫,𝐺𝑦

)

∞

𝑘=1

) > 0

(𝐴12) 

We multiply both sides of this inequality by 𝔼𝜋[�̅�]. Grouping the coefficients of 𝑟 gives: 

𝑟 (𝛽𝔼𝜋[𝑤𝑥],𝐺𝑦
+ ∑

(−1)𝑘

𝔼𝜋[�̅�]𝑘
(≪𝑘 �̅� ≫ 𝛽𝔼𝜋[𝑤𝑥],𝐺𝑦

+ 𝛽≪𝑤𝑥,𝑘�̅�≫,𝐺𝑦
)

∞

𝑘=1

)

> −𝛽𝔼𝜋[𝑤𝑥],𝐺𝑥
+ ∑

(−1)𝑘

𝔼𝜋[�̅�]𝑘
(−≪𝑘 �̅� ≫ 𝛽𝔼𝜋[𝑤𝑥],𝐺𝑥

− 𝛽≪𝑤𝑥,𝑘�̅�≫,𝐺𝑥
)

∞

𝑘=1

 

(𝐴13) 

For clarity, we denote the regression slopes of the individual’s genetic value 𝐺𝑥 and the genetic value of 

its social partner 𝐺𝑦 on the different parameters of the individual’s probability distribution for 

reproductive success as follows: 

𝑏𝜇 ≡ 𝛽𝔼𝜋[𝑤𝑥],𝐺𝑦
= 𝛽𝔼𝜋[𝑤𝑦],𝐺𝑥

 (𝐴14𝑎) 

𝑏𝑘 ≡ 𝛽≪𝑤𝑥,𝑘�̅�≫,𝐺𝑦
= 𝛽≪𝑤𝑦,𝑘�̅�≫,𝐺𝑥

(𝐴14𝑏) 

𝑐𝜇 ≡ −𝛽𝔼𝜋[𝑤𝑥],𝐺𝑥
(𝐴14𝑐) 

𝑐𝑘 ≡ −𝛽≪𝑤𝑥,𝑘�̅�≫,𝐺𝑥
(𝐴14𝑑) 
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The general expression for a stochastic Hamilton’s rule is then: 

𝑟 (𝑏𝜇 + ∑
(−1)𝑘

𝔼𝜋[�̅�]𝑘 (≪𝑘 �̅� ≫ 𝑏𝜇 + 𝑏𝑘)

∞

𝑘=1

) > 𝑐𝜇 + ∑
(−1)𝑘

𝔼𝜋[�̅�]𝑘 (≪𝑘 �̅� ≫ 𝑐𝜇 + 𝑐𝑘)

∞

𝑘=1

(𝐴15) 

which is Inequality (1) in the main text. 

A2 | Approximation for the first two moments 

A bet-hedging genotype reduces the variance in fitness at the expense of reducing arithmetic mean 

fitness. We obtain the stochastic approximation of Hamilton’s rule suitable for bet-hedging effects by 

ignoring 𝑘 > 1 in Equation (A4) (e.g. skew) to focus only on the arithmetic mean and variance effects. 

This allows us to approximate the selection covariance of the Price equation as follows: 

𝔼𝜋[Δ�̅�] ≈ ℂ𝑥 [𝐺𝑥, (
𝔼𝜋[𝑤𝑥]

𝔼𝜋[�̅�]
−

ℂ𝜋[𝑤𝑥, �̅�]

𝔼𝜋[�̅�]2 )] (𝐴16) 

The covariance between individual fitness 𝑤𝑥 and population average fitness �̅� in Equation (A16) can 

be alternatively expressed as: 

ℂ𝜋[𝑤𝑥, �̅�] = 𝜌𝑥𝜎𝜋[𝑤𝑥]𝜎𝜋[�̅�] (𝐴17) 

where 𝜎𝜋[𝑤𝑥] is the standard deviation of the individual’s reproductive success, 𝜎𝜋[�̅�] is the standard 

deviation of the population’s average reproductive success over 𝛱, and 𝜌𝑥 is the product-moment 

correlation coefficient for 𝑤𝑥 and �̅� as they fluctuate over 𝛱. Substituting these terms into the 

approximation of the selection covariance (Equation (A16)) obtains: 

𝔼𝜋[Δ�̅�] ≈
1

𝔼𝜋[�̅�]
ℂ𝑥[𝐺𝑥, (𝔼𝜋[𝑤𝑥] − 𝜈𝜌𝑥𝜎𝜋[𝑤𝑥])] (𝐴18) 

where 𝜈 denotes the coefficient of variation of the population’s average reproductive success: 

𝜈 =
𝜎𝜋[�̅�]

𝔼𝜋[�̅�]
(𝐴19) 

𝜈 is independent of the organism’s decisions, and quantifies the degree to which the environment is 

stochastic. 

The condition for expected increase in �̅� (𝔼𝜋[Δ�̅�] > 0) is then:

ℂ𝑥[𝐺𝑥, (𝔼𝜋[𝑤𝑥] − 𝜈𝜌𝑥𝜎𝜋[𝑤𝑥])] > 0 (𝐴20) 
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Above (Equation (A5)), we have already defined 𝔼𝜋[𝑤𝑥] using multiple linear regression. We follow a 

similar approach with standard deviation, weighted by the degree to which it correlates (𝜌𝑥) with the 

fluctuating average reproductive success �̅� in the population: 

𝜌𝑥𝜎𝜋[𝑤𝑥] = 𝛼𝜌𝑥𝜎𝜋[𝑤𝑥] + 𝛽𝜌𝑥𝜎𝜋[𝑤𝑥],𝐺𝑥
𝐺𝑥 + 𝛽𝜌𝑥𝜎𝜋[𝑤𝑥],𝐺𝑦

𝐺𝑦 + 𝜖𝜌𝑥𝜎𝜋[𝑤𝑥] (𝐴21) 

Substituting Equation (A5) and Equation (A21) into the condition for selection (Inequality (A20)), we 

obtain: 

ℂ𝑥 [𝐺𝑥, (𝛼𝔼𝜋[𝑤𝑥] + 𝛽𝔼𝜋[𝑤𝑥],𝐺𝑥
𝐺𝑥 + 𝛽𝔼𝜋[𝑤𝑥],𝐺𝑦

𝐺𝑦 + 𝜖𝔼𝜋[𝑤𝑥]

− 𝜈 (𝛼𝜌𝑥𝜎𝜋[𝑤𝑥] + 𝛽𝜌𝑥𝜎𝜋[𝑤𝑥],𝐺𝑥
𝐺𝑥 + 𝛽𝜌𝑥𝜎𝜋[𝑤𝑥],𝐺𝑦

𝐺𝑦 + 𝜖𝜌𝑥𝜎𝜋[𝑤𝑥]))] > 0

(𝐴22) 

As before, the covariances of 𝐺𝑥 with the constants equal 0 (i.e. ℂ𝑥[𝐺𝑥, 𝛼𝔼𝜋[𝑤𝑥]] =

ℂ𝑥[𝐺𝑥, 𝑣𝛼𝜌𝑥𝜎𝜋[𝑤𝑥]] =  0), and the covariances with the error terms are assumed to be zero (i.e.

ℂ𝑥[𝐺𝑥, 𝜖𝔼𝜋[𝑤𝑥]] = ℂ𝑥[𝐺𝑥, 𝑣𝜖𝜌𝑥𝜎𝜋[𝑤𝑥]] = 0). For clarity, we denote the effects on the correlated variation

of the recipient’s reproductive success as follows: 

𝑏𝜎 ≡ −𝛽𝜌𝑥𝜎𝜋[𝑤𝑥],𝐺𝑦
= −𝛽𝜌𝑥𝜎𝜋[𝑤𝑦],𝐺𝑥

(𝐴23𝑎) 

𝑐𝜎 ≡ 𝛽𝜌𝑥𝜎𝜋[𝑤𝑥],𝐺𝑥
(𝐴23𝑏) 

Substituting Equations (A23a) and (A23b) into (A22) gives: 

𝑏𝜇ℂ𝑥[𝐺𝑥, 𝐺𝑦] − 𝑐𝜇ℂ𝑥[𝐺𝑥, 𝐺𝑥] − 𝑣(𝑐𝜎ℂ𝑥[𝐺𝑥, 𝐺𝑥] − 𝑏𝜎ℂ𝑥[𝐺𝑥, 𝐺𝑦]) > 0 (𝐴24) 

Dividing both sides of Inequality (A24) by 𝕍𝑥[𝐺𝑥] to obtain relatedness (𝑟 ≡
ℂ𝑥[𝐺𝑦,𝐺𝑥]

𝕍𝑥[𝐺𝑥]
), we can rewrite 

the condition for selection as follows: 

𝑟(𝑏𝜇 + 𝜈𝑏𝜎) > 𝑐𝜇 + 𝜈𝑐𝜎 (𝐴25) 

which is Inequality (2) in the main text. 

Note that a positive benefit 𝑏𝜎 (beneficial for the recipient) will be a negative regression slope, since it 

will be reducing the volatility of the recipient’s reproduction. Likewise, a positive cost 𝑐𝜎 (deleterious for 

the actor) will be a positive regression slope, since it will be increasing the volatility of the actor’s 

reproduction. If the actor can succeed in reducing its own reproductive volatility, 𝑐𝜎 will be negative (i.e. 

a ‘negative cost’). 

Accordingly, the benefit term 𝐵 to expected relative fitness is: 
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𝐵 ≈ 𝑏𝜇 + 𝜈𝑏𝜎 (𝐴26) 

The cost term 𝐶 to expected relative fitness is: 

𝐶 ≈ 𝑐𝜇 + 𝜈𝑐𝜎 (𝐴27) 

These are approximations of the exact benefit and cost terms captured in the general expression for 

Hamilton’s rule (Inequality (1) in the main text), showing that selection can favour paying a cost to 

expected reproductive success (𝑐𝜇 > 0, 𝑐𝜎 = 0) to reduce the �̅�-correlated variation of a relative’s 

reproductive success (𝑏𝜎 > 0) even in the absence of any effect on the expected reproductive success 

of the recipient (𝑏𝜇 = 0). In this situation: 

𝔼𝜋[Δ�̅�] > 0  ⟺   𝑟 >
𝑐𝜇

𝜈𝑏𝜎

(𝐴28) 

The relative importance of mean effects (𝑏𝜇 and 𝑐𝜇) versus volatility effects (𝑏𝜎 and 𝑐𝜎) is determined 

by 𝑣. If we denote the importance of mean effects (i.e. their power to determine the outcome of 

selection) with the weight 𝑎𝜇 and the importance of volatility effects with the weight 𝑎𝜎, such that 

Inequality (A25) can be written as 𝑟(𝑎𝜇𝑏𝜇 + 𝑎𝜎𝑏𝜎) > 𝑎𝜇𝑐𝜇 + 𝑎𝜎𝑐𝜎, these weights are the numerator and 

denominator of 𝑣 (i.e. 𝑎𝜇 = 𝔼𝜋[�̅�] and 𝑎𝜎 = 𝜎𝜋[�̅�]). In short, we emphasise that the true benefits and 

costs in social evolution should be measured using the expectation of relative fitness1, which we 

decompose here into mean fecundity and volatility effects, rather than mean fecundity effects alone. 

Under the definition of ‘bet-hedging’, a behaviour must incur a cost to arithmetic mean number of 

offspring whilst deriving a benefit by reducing the variance associated with the number of offspring3. The 

role of fitness variation reduction in social evolution has long attracted verbal speculation9,10,13,36–39, but 

has evaded formalisation. We define ‘altruistic bet-hedging’ as occurring when the cost (a reduction in 

arithmetic mean number of offspring) is paid by the actor whilst a recipient derives the benefit (a 

reduction in the variance associated with the number of offspring). It is, of course, possible that the 

recipient may also experience either an increase or a decrease in arithmetic mean number of offspring (a 

𝑏𝜇 effect). For clarity, we include such cases as ‘altruistic bet-hedging’ only if the 𝑏𝜇 effect if insufficient 

to overcome the costs paid by the actor without the additional 𝑏𝜎 effect. A behaviour is altruistic bet-

hedging if it (i) involves a cost 𝑐𝜇 paid by the actor and (ii) would not evolve without a socially mediated 

reduction in the variation of a recipient’s reproductive success (a 𝑏𝜎 effect).  

In short, each state has a mean fitness �̅�, and a distribution of realised fitnesses for every individual. 

Unlike environmental stochasticity, within-genotype demographic stochasticity (inter-individual variation 

in fitness within the same environmental state) is shown by Inequality (2) (main text) not to matter to the 

outcome of selection in large populations, because the regression slopes cut through this variation to 
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obtain the relationship between alleles and fitness visible to natural selection. The one condition in which 

inter-individual variation in fitness within the same environment state does matter is when population 

sizes (the scale of the competitive population) are tiny, a well-known result in the bet-hedging literature 

that we generalise for social interactions in section A5 below (Inequality (3) in the main text).  

Note that when the ‘natural’ distribution for reproductive success is sufficiently skewed (i.e. either good 

years or bad years are rare), Hamilton’s rule will need to be approximated to higher moments (e.g. 𝑘 =

 2), using Inequality (1) in the main text, to capture effects on the asymmetry of the probability 

distributions from which the social partners are sampling their reproductive success (although under such 

conditions, organisms will tend to be specialised to the common environmental state). 

A3 | Non-social bet-hedging and Hamilton’s rule 

In this section, we show how the stochastic Hamilton’s rule (Inequality (A25)) captures familiar forms of 

bet-hedging as special cases. In the absence of social interaction (𝑟𝐵 = 0), the rule is simply: 

𝑐𝜇 + 𝑣𝑐𝜎 < 0 (𝐴29) 

Note that 𝑐𝜇 = −𝛽𝔼𝜋[𝑤𝑥],𝐺𝑥
 (Equation (A14c)), so a reduction in the reproductive success of the actor

(𝛽𝔼𝜋[𝑤𝑥],𝐺𝑥
< 0) represents a positive cost 𝑐𝜇. In terms of regression effects, therefore, the stochastic

Hamilton’s rule shows the condition for non-social bet-hedging to be as follows, where 𝛽𝔼𝜋[𝑤𝑥],𝐺𝑥
< 0

and 𝛽𝜌𝑥𝜎𝜋[𝑤𝑥],𝐺𝑥
< 0:

𝛽𝔼𝜋[𝑤𝑥],𝐺𝑥
> 𝑣𝛽𝜌𝑥𝜎𝜋[𝑤𝑥],𝐺𝑥

(𝐴30) 

To see how these results recover previous results in the non-social bet-hedging literature, consider a 

non-social haploid population consisting of two rival alleles, denoted 𝐴1 and 𝐴2. To identify whether 

selection is expected to favour the 𝐴1 allele (𝔼𝜋[𝛥�̅�] > 0), we ask whether there will be a change in

genetic value for 𝐴1 (individuals with the allele of interest 𝐴1 have a genetic value 𝐺𝑥 = 1, whilst those 

lacking it have a genetic value of 𝐺𝑥 = 0).  

Each individual 𝑥 has an expected number of offspring 𝜇𝑥 and a standard deviation in number of 

offspring 𝜎𝑥. Following Frank & Slatkin40 and Starrfelt & Kokko3, set 𝜇𝑥 equal to the value 𝜇1 for all carriers 

of allele 1 (and equal to 𝜇2 for all carriers of allele 2) and 𝜎𝑥 equal to the value 𝜎1 for all carriers of allele 

1 (and equal to 𝜎2 for all carriers of allele 2). In other words, members of a genotype sample their fitness 

𝑤𝑥 from a probability distribution shared by all members of the genotype, but they may in principle do 

so in an uncorrelated fashion with other members of the genotype. The degree to which an individual’s 

fitness 𝑤𝑥 correlates with fluctuations in population average reproductive success �̅� is given by 𝜌𝑤𝑥,�̅�.
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To obtain the exact expected change in gene frequency, Hamilton’s rule can be expressed in the 

following format: 

𝔼𝜋[Δ�̅�] =
𝑟(𝑏𝜇 + 𝑣𝑏𝜎) − 𝑐𝜇 − 𝑣𝑐𝜎

𝔼𝜋[�̅�]
⋅ 𝕍𝑥[𝐺𝑥] (𝐴31) 

In Equation (A31), we derive Hamilton’s rule without dividing by the variance 𝕍𝑥[𝐺𝑥] in genetic value; 

see Equation (2.3) in Okasha & Martens41. 

We now set 𝑏𝜇 and 𝑏𝜎 in Equation (A31) to zero to focus on non-social cases. Fitting the stochastic 

Hamilton’s rule (Inequality (A25)) obtains the following non-social components 𝑐𝜇 and 𝑐𝜎: 

𝑐𝜇 = 𝜇2 − 𝜇1 (𝐴32𝑎) 

𝑐𝜎 = 𝜌1,�̅�𝜎1 − 𝜌2,�̅�𝜎2 (𝐴32𝑏) 

In other words, there are two horizontal positions (0 and 1) on a graph of 𝜇 against genetic value 𝐺𝑥; 

the two vertical positions are 𝜇1 and 𝜇2. The slope 𝛽𝔼𝜋[𝑤𝑥],𝐺𝑥
 of 𝜇 against 𝐺𝑥 is then simply 𝜇1 − 𝜇2. The

cost term 𝑐𝜇 is −𝛽𝔼𝜋[𝑤𝑥],𝐺𝑥
, i.e. 𝜇2 − 𝜇1. Likewise, on the graph of �̅�-correlated volatility against genetic

value 𝐺𝑥, there are two vertical positions 𝜌1,�̅�𝜎1 and 𝜌2,�̅�𝜎2, so the slope 𝛽𝜌𝑥𝜎𝜋[𝑤𝑥],𝐺𝑥
 of �̅�-correlated

volatility against 𝐺𝑥 is 𝜌1,�̅�𝜎1 − 𝜌2,�̅�𝜎2. The coefficient 𝑐𝜎 is equal to 𝛽𝜌𝑥𝜎𝜋[𝑤𝑥],𝐺𝑥
 (Equation (A23b)).

Recall that 𝑣 is the coefficient of variation in population average reproductive success (
𝜎𝜋[�̅�]

𝔼𝜋[�̅�]
; Equation 

(A19)). The variance in breeding value, 𝕍𝑥[𝐺𝑥], is equal to 𝑞1𝑞2, as it represents a two-point distribution 

(i.e. 𝕍𝑥[𝐺𝑥] = 𝑞1𝑞2(1 − 0)2 = 𝑞1𝑞2). Equation (A31) can now be written:

𝔼𝜋[Δ�̅�] =
𝜇1 − 𝜇2 −

𝜎𝜋[�̅�]
𝔼𝜋[�̅�]

(𝜌1,�̅�𝜎1 − 𝜌2,�̅�𝜎2)

𝔼𝜋[�̅�]
𝑞1𝑞2 (𝐴33)

 

As there are only two genetic values in a haploid world (0 and 1), 𝜌1,�̅�𝜎1 and 𝜌2,�̅�𝜎2 are the expected 

values of  𝜌𝑤𝑥,�̅�𝜎𝑥 for members of each genotype, obtained as a predicted value in a least-squares

regression (Inequality (A25)). We denote individuals with the index 𝑖: 

𝜌1,�̅�𝜎1 = 𝜎1 ⋅
1

𝑞1𝑁
∑ 𝜌𝑤𝑖,�̅�

𝑞1𝑁

𝑖=1

(𝐴34𝑎) 

𝜌2,�̅�𝜎2 = 𝜎2 ⋅
1

𝑞2𝑁
∑ 𝜌𝑖,�̅�

𝑞2𝑁

𝑖=1

(𝐴34𝑏) 
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The summation term in Equation (A34a) contains the correlation between individual 𝑖’s reproductive 

success 𝑤𝑖 and the average reproductive success �̅� in the population. Since a correlation can be 

expressed in the form 𝜌𝑍,𝑌 =
ℂ[𝑍,𝑌]

𝜎[𝑍]𝜎[𝑌]
, we express this summation term as follows: 

1

𝑞1𝑁
∑ 𝜌𝑤𝑖,�̅�

𝑞1𝑁

𝑖=1

=
1

𝑞1𝑁
∑

ℂ𝜋[𝑤𝑖, �̅�]

𝜎1𝜎𝜋[�̅�]

𝑞1𝑁

𝑖=1

(𝐴35) 

We then carry the summation inside the covariance: 

1

𝑞1𝑁
∑ 𝜌𝑤𝑖,�̅�

𝑞1𝑁

𝑖=1

=
ℂ𝜋 [

1
𝑞1𝑁

∑ 𝑤𝑖
𝑞1𝑁
𝑖=1 , �̅�]

𝜎1𝜎𝜋[�̅�]
(𝐴36) 

The term 
1

𝑞1𝑁
∑ 𝑤𝑖

𝑞1𝑁
𝑖=1  is the average reproductive success for carriers of allele 𝐴1. To match notation in 

Starrfelt & Kokko3, we call this 𝑅1: 

𝑅1 =
1

𝑞1𝑁
∑ 𝑤𝑖

𝑞1𝑁

𝑖=1

(𝐴37) 

Equation (A37) can now be expressed more simply as: 

1

𝑞1𝑁
∑ 𝜌𝑤𝑖,�̅�

𝑞1𝑁

𝑖=1

=
ℂ𝜋[𝑅1, �̅�]

𝜎1𝜎𝜋[�̅�]
(𝐴38) 

Likewise, since �̅� = 𝑞1𝑅1 + 𝑞2𝑅2, we substitute this formula for �̅� into Equation (A38) and expand the 

covariance (since ℂ[𝑋 + 𝑍, 𝑌] = ℂ[𝑋, 𝑌] + ℂ[𝑍, 𝑌]): 

1

𝑞1𝑁
∑ 𝜌𝑤𝑖,�̅�

𝑞1𝑁

𝑖=1

=
𝑞1𝜎𝜋[𝑅1]2 + 𝑞2ℂ𝜋[𝑅1, 𝑅2]

𝜎1𝜎𝜋[�̅�]
(𝐴39) 

As Starrfelt & Kokko3 note in their Equations (7–9), ℂ𝜋[𝑅1, 𝑅2] = 𝜌12𝜎1𝜎2, and 𝜎𝜋[𝑅1]2 = 𝜌1𝜎1
2, letting

𝜎1 denote the standard deviation in reproductive success of an individual carrying allele 1 and 𝜌1 denote 

the correlation in reproductive success between individuals carrying allele 1. Therefore: 

1

𝑞1𝑁
∑ 𝜌𝑤𝑖,�̅�

𝑞1𝑁

𝑖=1

=
𝑞1𝜌1𝜎1

2 + 𝑞2𝜌12𝜎1𝜎2

𝜎1𝜎𝜋[�̅�]
(𝐴40) 

We can perform the same series of rearrangements for carriers of allele 𝐴2: 

1

𝑞2𝑁
∑ 𝜌𝑤𝑖,�̅�

𝑞2𝑁

𝑖=1

=
𝑞2𝜌2𝜎2

2 + 𝑞1𝜌12𝜎1𝜎2

𝜎2𝜎𝜋[�̅�]
(𝐴41) 
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Substituted into Hamilton’s rule (Equation (A33)), this obtains: 

𝔼𝜋[Δ�̅�] =
𝜇1 − 𝜇2 +

1
𝔼𝜋[�̅�]

(𝑞2𝜌2𝜎2
2 − 𝑞1𝜌1𝜎1

2 + (𝑞1 − 𝑞2)𝜌12𝜎1𝜎2)

𝔼𝜋[�̅�]
𝑞1𝑞2 (𝐴42) 

If the population is neither rising nor falling in size, 𝔼𝜋[�̅�] = 1: 

𝔼𝜋[Δ�̅�] = 𝑞1𝑞2 (𝜇1 − 𝜇2 + (𝑞2𝜌2𝜎2
2 − 𝑞1𝜌1𝜎1

2 + (𝑞1 − 𝑞2)𝜌12𝜎1𝜎2)) (𝐴43) 

Equation (A43) recovers Frank & Slatkin’s40 Equation (7) and Starrfelt & Kokko’s3 Equation (10) for the 

canonical bet-hedging model familiarly used in the literature (i.e. two alleles in a fixed-size population at 

a haploid locus in a fluctuating environment of two or more states).  

From Equation (A43), we can recover the geometric mean heuristic (which provides a prediction of 

which allele will fixate) by assuming40 that there is no correlation between genotypes (𝜌12 = 0) and 

setting the population to equal frequencies40 of each allele (𝑞1 = 𝑞2 =
1

2
). These conditions provide the

well-known geometric-mean approximation (Equation (12) in Frank & Slatkin40; note that, as heuristic 

approximations, there are at least five different estimates for the geometric mean, all of which perform 

roughly equally well42): 

𝜇1 −
𝜌1𝜎1

2

2
> 𝜇2 −

𝜌2𝜎2
2

2

A4 | Uncertain relatedness 

The potential effects of stochasticity on relatedness have been raised by Goodnight43 and Lehmann & 

Balloux24. In this section, we explore how uncertainty over relatedness influences the outcome of 

selection. We show that the mean relatedness of recipients is sufficient to predict the outcome of 

selection when there is no strong correlation (across environmental states) between the relatedness 𝑟 of 

social partners and the average reproductive success in the population (�̅�). We denote this correlation 

as 𝜌𝑟,�̅�. However, if the relatedness of interactants and average reproductive success are negatively 

correlated (𝜌𝑟,�̅� < 0), investments in social partners become more valuable as environmental 

stochasticity increases (i.e. at high values of 𝑣). Conversely, investments in social partners become less 

valuable in a stochastic environment if this correlation is positive (𝜌𝑟,�̅� > 0).  

To illustrate this result, we denote the reproductive success of individual 𝑥 in state 𝜋 as 𝑤𝑥(𝜋), and 

express this quantity as a function of its own genetic value 𝐺𝑥 and the genetic value 𝐺𝑦 of its social 

partner: 
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𝑤𝑥(𝜋) = 𝛼𝑤𝑥(𝜋)
+ 𝛽𝑤𝑥(𝜋),𝐺𝑥

𝐺𝑥 + 𝛽𝑤𝑥(𝜋),𝐺𝑦
𝐺𝑦(𝜋) + 𝜖𝑤𝑥(𝜋)

(𝐴44) 

We substitute this regression formula into the Price equation (Equation (A2)) to express the condition 

for selection (𝔼𝜋[Δ�̅�] > 0) as:

𝔼𝜋 [ℂ𝑥 [𝐺𝑥,
𝛼𝑤𝑥

+ 𝛽𝑤𝑥,𝐺𝑥
𝐺𝑥 + 𝛽𝑤𝑥,𝐺𝑦

𝐺𝑦 + 𝜖𝑤𝑥

�̅�
]] > 0 (𝐴45) 

For a given environmental state 𝜋, �̅� is a constant with respect to 𝐺𝑥, so we move it outside the 

covariance, which is defined only for the environmental state 𝜋. By the linearity of covariances 

(ℂ[𝑋 + 𝑌, 𝑍] = ℂ[𝑋, 𝑍] + ℂ[𝑌, 𝑍]), this is equal to: 

𝔼𝜋 [
(ℂ𝑥[𝐺𝑥, 𝛼𝑤𝑥

] + ℂ𝑥[𝐺𝑥, 𝛽𝑤𝑥,𝐺𝑥
𝐺𝑥] + ℂ𝑥 [𝐺𝑥, 𝛽𝑤𝑥,𝐺𝑦

𝐺𝑦] + ℂ𝑥[𝐺𝑥, 𝜖𝑤𝑥
])

�̅�
] > 0 (𝐴46) 

ℂ𝑥[𝐺𝑥, 𝛼𝑤𝑥
] = 0 (since 𝛼𝑤𝑥

 is a constant) and we assume ℂ𝑥[𝐺𝑥, 𝜖𝑤𝑥
] = 0. Then:

𝔼𝜋 [
(𝛽𝑤𝑥,𝐺𝑥

ℂ𝑥[𝐺𝑥, 𝐺𝑥] + 𝛽𝑤𝑥,𝐺𝑦
ℂ𝑥[𝐺𝑥, 𝐺𝑦])

�̅�
] > 0 (𝐴47) 

We now divide both sides of Inequality (A47) by the variance in genetic value (𝕍𝑥[𝐺𝑥]) to obtain state-

specific relatedness 𝑟𝜋 =
ℂ𝑥[𝐺𝑥,𝐺𝑦]

𝕍𝑥[𝐺𝑥]
: 

𝔼𝜋 [
𝛽𝑤𝑥,𝐺𝑥

+ 𝛽𝑤𝑥,𝐺𝑦
𝑟

�̅�
] > 0 (𝐴48) 

Retaining the first two terms of the Taylor series expansion of Inequality (A48) gives: 

𝔼𝜋[𝛽𝑤𝑥,𝐺𝑥
] + 𝔼𝜋 [𝛽𝑤𝑥,𝐺𝑦

𝑟]

𝔼𝜋[�̅�]
−

ℂ𝜋[𝛽𝑤𝑥,𝐺𝑥
, �̅�] + ℂ𝜋 [𝛽𝑤𝑥,𝐺𝑦

𝑟, �̅�]

𝔼𝜋[�̅�]2
> 0 (𝐴49) 

We now consider the case in which the benefit conferred on a recipient and the cost paid by the actor 

are the same in all environmental states (𝛽𝑤𝑥,𝐺𝑦
= 𝑏 and 𝛽𝑤𝑥,𝐺𝑥

= −𝑐 for all 𝜋). However, we allow

relatedness to the recipient to vary among states 𝜋. This captures the possibility that actors associate 

with either closer or more distant relatives when the conditions change. The covariance of cost and 

population average fitness is zero, because cost is now a constant across states (ℂ𝜋[𝛽𝑤𝑥,𝐺𝑥
, �̅�] =

ℂ𝜋[𝑐, �̅�] = 0). Multiplying both sides by 𝔼𝜋[�̅�], Inequality (A49) can be simplified to: 

𝑏 ⋅ 𝔼𝜋[𝑟] − 𝑏 ⋅
ℂ𝜋[𝑟, �̅�]

𝔼𝜋[�̅�]
− 𝑐 > 0 (𝐴50) 
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We now rearrange Inequality (A50) by expanding the covariance. The covariance between relatedness 

and population average fitness (ℂ𝜋[𝑟𝑦, �̅�]) can be written as 𝜌𝑟,�̅�𝜎𝜋[𝑟]𝜎𝜋[�̅�], where 𝜌 denotes 

correlation and 𝜎𝜋 denotes standard deviation across environmental states. We introduce 𝑣 as the 

stochasticity coefficient (the coefficient of variation in population average reproductive success, 𝑣 =

𝜎𝜋[�̅�]

𝔼𝜋[�̅�]
, which we introduced earlier in Equation (A19)). We also use the following notation for clarity: we 

denote the expectation of relatedness across environmental states as 𝑟𝜇, and we denote the standard 

deviation of relatedness across environmental states as 𝑟𝜎: 

𝑟𝜇 = 𝔼𝜋[𝑟] (𝐴51𝑎) 

𝑟𝜎 = 𝜎𝜋[𝑟] (𝐴51𝑏) 

Accordingly, Inequality (A50) can be expressed as: 

(𝑟𝜇 − 𝜌𝑟,�̅�𝑣𝑟𝜎)𝑏 > 𝑐 (𝐴52) 

Inequality (A52) shows that uncertainty over relatedness (𝑟𝜎) only influences selection if relatedness 

fluctuates strongly in either a positively or negatively correlated fashion with population average 

reproductive success. A negative correlation, across environmental states, between relatedness and 

average reproductive success (𝜌𝑟,�̅� < 0) results in an actor’s most valuable investments being focused 

on closer relatives. These investments are the ‘most valuable’ because an increase in recipient fecundity 

of a given size 𝑏 is more valuable when competitors are underperforming (low �̅�): the recipient will enjoy 

a proportionally greater market share of reproduction than if the increase had occurred when 

competitors were overperforming (high �̅�). Mean relatedness 𝑟𝜇 is sufficient to capture the outcome of 

selection when population mean reproductive success does not fluctuate (𝑣 ≈ 0), even if actors face high 

levels of uncertainty 𝑟𝜎 about the kinship of recipients.  

A5 | Demographic stochasticity 

We now consider the role of risk in a ‘static’ environment, for which the environment does not fluctuate 

between states (the influence of the environment is identical across the set 𝛱). In a population of size 𝑁 

in which organisms sample their reproductive success independently (ℂ𝜋[𝑤𝑥 , 𝑤𝑗≠𝑥] = 0), the covariance 

(defined across possible fitness outcomes) between the focal individual’s reproductive success (𝑤𝑥) and 

the average reproductive success in the population (�̅�) is: 
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ℂ𝜋[𝑤𝑥, �̅�] = ℂ𝜋 [𝑤𝑥,
1

𝑁
∑ 𝑤𝑗

𝑁

𝑗

] =
1

𝑁
∑ ℂ𝜋[𝑤𝑥, 𝑤𝑗]

𝑁

𝑗

=
1

𝑁
(ℂ𝜋[𝑤𝑥, 𝑤𝑥] + ∑ ℂ𝜋[𝑤𝑥, 𝑤𝑗]

𝑗≠𝑥

) =
𝕍𝜋[𝑤𝑥]

𝑁

=
𝜎𝜋[𝑤𝑥]2

𝑁

(𝐴53) 

We substitute this into the selection covariance of the Price equation (and multiply out 𝔼𝜋[�̅�]): 

ℂ𝑥 [𝐺𝑥, (𝔼𝜋[𝑤𝑥] −
𝜎𝜋[𝑤𝑥]2

𝑁𝔼𝜋[�̅�]
)] > 0 (𝐴54) 

Applying Queller’s33 regression method (as in Appendix A2) to this equation, we obtain Inequality (3) in 

the main text (where 𝑏𝜎2  is the effect of the partner’s genotype on the organism’s within-generation 

variance in reproductive success (−𝛽𝕍𝜋[𝑤𝑥],𝐺𝑦
), and 𝑐𝜎2 is the effect of the organism’s genotype on its

own variance in reproductive success (𝛽𝕍𝜋[𝑤𝑥],𝐺𝑥
):

 𝑟 (𝑏𝜇 +
 𝑏𝜎2

𝑁𝔼𝜋[�̅�]
) > 𝑐𝜇 +

𝑐𝜎2

𝑁𝔼𝜋[�̅�]
(𝐴55) 

A6 | Environmental granularity and dispersal in Hamilton’s rule 

In this section, we show how the spatial scale at which environments fluctuate influences the role of 𝑏𝜎 

and 𝑐𝜎 in selection. 

The magnitude of the stochasticity coefficient 𝑣 depends on the correlation among individuals in their 

exposure to all conditions of the environment. Accordingly, when individuals are distributed across 

different microenvironments, the degree of correlation in environmental state across microenvironments 

influences the magnitude of 𝑣. Here, we illustrate this principle in a population divided into multiple 

microenvironments. 

Let the population undergoing global competition be distributed across a total of 𝑀 microenvironment 

patches, each of which samples its local environmental ‘microstate’ from an identical distribution. 

Population-wide environmental state 𝜋 is, in effect, a specific combination of microstates across a 

network of spatial patches inhabited by a population. Assuming there are equal numbers of individuals in 

each patch, the whole-population average reproductive success �̅� is equal to the mean of the mean 

reproductive success �̅�𝑚 in each patch 𝑚: 

�̅� =
1

𝑀
∑ �̅�𝑚

𝑀

𝑚=1

(𝐴56) 
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 Since the scale of competition is the whole population, the stochasticity coefficient 𝑣 is obtained as the 

coefficient of variation in whole-population average reproductive success �̅� (Equation (A19)): 

𝑣 =
𝜎𝜋[�̅�]

𝔼𝜋[�̅�]
=

𝜎𝜋 [
1
𝑀

∑ �̅�𝑚
𝑀
𝑚=1 ]

𝔼𝜋 [
1
𝑀

∑ �̅�𝑚
𝑀
𝑚=1 ]

(𝐴57) 

We assume that every patch samples its microstate from an identical distribution with a mean of 

𝔼𝜋[�̅�𝑚] = 𝔼𝜋[�̅�] and a variance of 𝕍𝜋[�̅�𝑚], but patches can be correlated or uncorrelated in their 

samples from this distribution. The variance of �̅� (i.e. 𝜎𝜋[�̅�]2) can then be obtained using the general

formula for the variance of a mean3 (since �̅� is the mean of a total of 𝑀 patches, each with its own �̅�𝑚 

in a particular state 𝜋 of the population): 

𝕍𝜋[�̅�] = 𝕍𝜋 [
1

𝑀
∑ �̅�𝑚

M

𝑚=1

] = (
1

𝑀
+

𝑀 − 1

𝑀
�̅�) 𝕍𝜋[�̅�𝑚] (𝐴58) 

�̅� denotes the average between-patch correlation in average reproductive success �̅�𝑚. As patch 

number 𝑀 approaches infinity, this whole-population variance 𝕍𝜋[�̅�] converges to a simple function of 

�̅� and the within-patch variance 𝕍𝜋[�̅�𝑚] in average reproductive success: 

lim
𝑀→∞

𝕍𝜋[�̅�] = �̅� ⋅ 𝕍𝜋[�̅�𝑚] (𝐴59) 

𝕍𝜋[�̅�] is the square of the numerator of 𝑣. Therefore, in a population distributed over many patches, 

𝑣 is as follows, where 𝑣𝑚 is the coefficient of variation in average reproductive success within a single 

patch (i.e. patch-level stochasticity, 𝑣𝑚 =
𝜎𝜋[�̅�𝑚]

𝔼𝜋[�̅�𝑚]
):

lim
𝑀→∞

𝑣 =
√�̅� ⋅ 𝕍𝜋[�̅�𝑚]

𝔼𝜋[�̅�𝑚]
=

𝜎𝜋[�̅�𝑚]

𝔼𝜋[�̅�𝑚]
⋅ √�̅� = 𝑣𝑚√�̅� (𝐴60) 

Equation (A60) shows that whole-population stochasticity 𝑣 approaches within-patch stochasticity 𝑣𝑚 

as between-patch correlation approaches 1 (full correlation). This illustrates the fundamental point, 

emphasised by Starrfelt & Kokko3 for non-social bet-hedging, that selection on variation effects (𝑏𝜎 and 

𝑐𝜎 in Inequality (A25)) is driven by whole-population environmental fluctuation when the scale of 

competition is at the level of the whole population (global competition), and that the ‘grain size’3 of 

environmental fluctuation (the size of completely correlated areas of the population) is key in determining 

the strength of selection (Main Text Fig. 1b). 
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Appendix B | Deriving regression effects 

 

Here, we describe how the benefit and cost terms are obtained in a specific model (implemented as a 

simulation in MATLAB, for which code is given in Appendix D). 

 

B1 | Discrete environment states 

Let a haploid asexual population consist of two genotypes, with genetic values 0 and 1, at a single locus. 

Genotype 0 is non-cooperative, whilst genotype 1 pays a cost 𝑐 to reduce the volatility of its recipients’ 

reproductive success to a proportion 𝜂 of its natural level. The frequency of genotype 1 in the population 

is 𝑝 (and so the frequency of genotype 0 is 1 − 𝑝). The environment fluctuates between two states (‘good’ 

and ‘bad’). 

Following the assortment rules in the first model in Gardner et al.1 (p. 1030), we assume that individuals 

preferentially pair with same type (cooperators or noncooperators) with the probabilities in Table B1.  

Without cooperation, individuals have a fecundity of 𝑧1 in a good year and 𝑧2 in a bad year. Good years 

occur with probability 𝑑 and bad years with probability 1 − 𝑑. The standard deviation of a genotype 0 

individual with a genotype 0 social partner is then: 

𝜎00 = √(1 − 𝑑)𝑑(𝑧1 − 𝑧2)2 (𝐵1) 

 

Supplementary Table B1 | Mean and variation of reproductive success as a function of social 

partners in a world fluctuating unpredictably between two states 

 

Genotypes Probability of interaction Mean reproductive success 

(𝜇𝑥𝑦) 

Volatility of reproductive success 

(𝜎𝑥𝑦) 

𝜌 if 𝜂 ≠ 0 

Focal 

(𝑥) 

Partner 

(𝑦) 

  

1 1 𝑝2 + 𝛼𝑝(1 − 𝑝) 𝑑(𝑧1 − 𝑐) + (1 − 𝑑)(𝑧2 − 𝑐) 
𝜂√𝑑(1 − 𝑑)((𝑧1 − 𝑐) − (𝑧2 − 𝑐))

2
 

1 

1 0 (1 − 𝛼)𝑝(1 − 𝑝) 𝑑(𝑧1 − 𝑐) + (1 − 𝑑)(𝑧2 − 𝑐) 
√𝑑(1 − 𝑑)((𝑧1 − 𝑐) − (𝑧2 − 𝑐))

2
 

1 

0 1 (1 − 𝛼)𝑝(1 − 𝑝) 𝑑𝑧1 + (1 − 𝑑)𝑧2 𝜂√𝑑(1 − 𝑑)(𝑧1 − 𝑧2)2 1 

0 0 (1 − 𝑝)2 + 𝛼𝑝(1 − 𝑝) 𝑑𝑧1 + (1 − 𝑑)𝑧2 √𝑑(1 − 𝑑)(𝑧1 − 𝑧2)2 1 

Assortment rules follow the first model in Gardner et al.1, leading to 𝑟 = 𝛼. 
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A focal individual encountering a genotype 1 social partner experiences a reduction in its fecundity 

variation by the coefficient 𝜂.  

From Inequality (A25), Hamilton’s rule (approximated to the first two central moments) is: 

𝑟(𝑏𝜇 + 𝑣𝑏𝜎) > 𝑐𝜇 + 𝑣𝑐𝜎 (𝐵2) 

To find the four partial regression slopes (𝑏𝜇 , 𝑏𝜎 , 𝑐𝜇 , 𝑐𝜎), we fit the following equations to 

Supplementary Table B1: 

𝔼𝜋[𝑤𝑥] = 𝛼𝔼𝜋[𝑤𝑥] + 𝛽𝔼𝜋[𝑤𝑥],𝐺𝑥
𝐺𝑥 + 𝛽𝔼𝜋[𝑤𝑥],𝐺𝑦

𝐺𝑦 + 𝜖𝔼𝜋[𝑤𝑥] (𝐵3) 

𝜌𝑥𝜎𝜋[𝑤𝑥] = 𝛼𝜌𝑥𝜎𝜋[𝑤𝑥] + 𝛽𝜌𝑥𝜎𝜋[𝑤𝑥],𝐺𝑥
𝐺𝑥 + 𝛽𝜌𝑥𝜎𝜋[𝑤𝑥],𝐺𝑦

𝐺𝑦 + 𝜖𝜌𝑥𝜎𝜋[𝑤𝑥] (𝐵4) 

Thus, we solve two linear regression equations: one for expected reproductive success (𝔼𝜋[𝑤𝑥]) and 

one for the correlated variation of reproductive success (𝜌𝑥𝜎𝜋[𝑤𝑥]). The partial regression slopes 𝑚1 

and 𝑚2 in a multiple regression with two predictors ℎ1 and ℎ2 of 𝑙 can be found by solving the following 

simultaneous equations1: 

𝑚1 =
ℂ[𝑙, ℎ1]

𝕍[ℎ1]
− 𝑚2

ℂ[ℎ1, ℎ2]

𝕍[ℎ1]
(𝐵5) 

𝑚2 =
ℂ[𝑙, ℎ2]

𝕍[ℎ2]
− 𝑚1

ℂ[ℎ1, ℎ2]

𝕍[ℎ2]
(𝐵6) 

To find 𝑏𝜇 and 𝑐𝜇, we simultaneously solve: 

𝑚1 =
ℂ[𝔼𝜋[𝑤𝑥], 𝐺𝑥]

𝕍[𝐺𝑥]
− 𝑚2

ℂ[𝐺𝑥, 𝐺𝑦]

𝕍[𝐺𝑥]
(𝐵7) 

𝑚2 =
ℂ[𝔼𝜋[𝑤𝑥], 𝐺𝑦]

𝕍[𝐺𝑦]
− 𝑚2

ℂ[𝐺𝑥, 𝐺𝑦]

𝕍[𝐺𝑦]
(𝐵8) 

The components of Equations (B7) and (B8) fitted to Table B1 are: 

ℂ[𝔼𝜋[𝑤𝑥], 𝐺𝑥]

𝕍[𝐺𝑥]
= −𝑐 (𝐶9) 

ℂ[𝐺𝑥, 𝐺𝑦]

𝕍[𝐺𝑥]
= 𝛼 (𝐵10) 

ℂ[𝔼𝜋[𝑤𝑥], 𝐺𝑦]

𝕍[𝐺𝑦]
= −𝑐𝛼 (𝐵11) 

ℂ[𝐺𝑥, 𝐺𝑦]

𝕍[𝐺𝑦]
= 𝛼 (𝐵12) 
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We therefore simultaneously solve: 

𝑚1 = −𝑐 − 𝑚2𝛼 (𝐵13) 

𝑚2 = −(𝑚1 + 𝑐)𝛼 (𝐵14) 

This obtains 𝑚1 = −𝑐 and 𝑚2 = 0, which are the partial regression slopes 𝛽𝔼𝜋[𝑤𝑥],𝐺𝑥
 and 𝛽𝔼𝜋[𝑤𝑥],𝐺𝑦

, 

respectively. Since the components 𝑐𝜇 and 𝑏𝜇 in Inequality (A25) are 𝑐𝜇 = −𝛽𝔼𝜋[𝑤𝑥],𝐺𝑥
 and 𝑏𝜇 =

𝛽𝔼𝜋[𝑤𝑥],𝐺𝑦
, these components are therefore: 

𝑐𝜇 = 𝑐 (𝐵15) 

𝑏𝜇 = 0 (𝐵16) 

We solve an equivalent pair of simultaneous equations to find 𝑏𝜎 and 𝑐𝜎: 

𝑚3 =
ℂ[𝜎𝜋[𝑤𝑥], 𝐺𝑥]

𝕍[𝐺𝑥]
− 𝑚4

ℂ[𝐺𝑥, 𝐺𝑦]

𝕍[𝐺𝑥]
(𝐵17) 

𝑚4 =
ℂ[𝜎𝜋[𝑤𝑥], 𝐺𝑦]

𝕍[𝐺𝑦]
− 𝑚3

ℂ[𝐺𝑥, 𝐺𝑦]

𝕍[𝐺𝑦]
(𝐵18) 

Simultaneously solving Equations (B17) and (B18) obtains: 

𝑚3 = 0 (𝐵19) 

𝑚4 = (𝜂 − 1)𝜎𝑜𝑜 (𝐵20) 

𝑚3 is the partial regression slope 𝛽𝜌𝑥𝜎𝜋[𝑤𝑥],𝐺𝑥
, which provides the component 𝑐𝜎 in Inequality (A25). 

𝑚4 is the partial regression slope 𝛽𝜌𝑥𝜎𝜋[𝑤𝑥],𝐺𝑦
. The component 𝑏𝜎 in Inequality (A25) is equal to 

−𝛽𝜌𝑥𝜎𝜋[𝑤𝑥],𝐺𝑦
. Accordingly, these two components are: 

𝑐𝜎 = 0 (𝐵21) 

𝑏𝜎 = (1 − 𝜂)𝜎00 (𝐵22) 

𝑣 is a simple function of allele frequency 𝑝: 

𝜈 ≡
𝜎𝜋[�̅�]

𝔼𝜋[�̅�]
=

(𝑝𝜂 + (1 − 𝑝))𝜎00

𝜇00 − 𝑝𝑐
(𝐵23) 

This is an intuitive measure of stochasticity in this environment fluctuating unpredictably between two 

states: the numerator is the standard deviation of two completely correlated random variables (i.e. the 

sum of 𝜂𝜎00 and 𝜎00, weighted by the frequency of each allele), whilst the denominator is the average 

number of offspring across states (again, weighted by allele frequency). 
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Since 𝑝 appears in the equation for 𝑣, 𝑣 is frequency-dependent. Differentiating stochasticity (𝑣) with 

respect to the frequency of altruistic bet-hedgers (𝑝), 𝑣 decreases with rising 𝑝 when: 

1 − 𝜂 >
𝑐

𝜇00

(𝐵24) 

Accordingly, stochasticity 𝑣 falls as frequency 𝑝 rises (Extended Data Fig. E2) if the effect of variation 

reduction (1 − 𝜂) is greater than the relative size of mean-fecundity reduction (
𝑐

𝜇𝑜𝑜
).  

When this condition (Inequality (B24)) is met, as the frequency 𝑝 rises the bet-hedgers begin to render 

the environment effectively stable. At high frequency, the value of volatility-reducing altruism 𝑏𝜎 

therefore falls, because 𝜈 is low. The result is that the population can be reinvaded by familiar mean-

fecundity-maximisers, much as a ‘conspiracy of doves’ in the well-known hawk–dove game is vulnerable 

to invasion by hawks44. (At low costs (𝑐), intermediate levels of variation reduction 𝜂 are less constrained 

from reaching fixation.) Connections between coexistence and bet-hedging have been analysed in non-

social settings45, although not interpreted in terms of frequency-dependent effects on whole-population 

stochasticity. 

 

B2 | Frequency at which expected change due to selection is zero 

We now have all the components of Hamilton’s rule (𝑟 = 𝛼, 𝑐𝜇 = 𝑐, 𝑏𝜇 = 0, 𝑐𝜎 = 0, 𝑏𝜎 =

−(𝜂 − 1)𝜎00,𝜈 =
(𝑝𝜂+(1−𝑝))𝜎00

𝜇00−𝑝𝑐
). Putting these components together, we solve for the frequency 𝑝∗ at 

which there is no expected change due to selection (𝔼𝜋[Δ�̅�] = 0): 

𝑝∗ =
𝛼(𝜂 − 1)𝜎00

2 + 𝑐𝜇𝑜𝑜

𝑐2 − (𝜂 − 1)2𝜎00
2 𝛼

(𝐵25) 

When 0 < 𝑝∗ < 1, the expected frequency of the social bet-hedgers is intermediate. If 𝑟𝐵 > 𝐶 for all 

𝑝, then the population is expected to tend to 𝑝∗ = 1. Likewise, if 𝑟𝐵 < 𝐶 for all 𝑝, the population is 

expected to tend to 𝑝∗ = 0. 

 

B3 | Individual-based simulation 

To ensure that gene frequency makes incremental changes through generations in numerical simulation 

for the system in Table B1, we let offspring production across the population be driven by social 

interactions, and then sample a random 1% of the adult population for replacement in proportion to the 
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balance of genotypes amongst the offspring (i.e. each environmental state, 1% of the breeding spots 

become available for offspring produced that generation). 

𝑝∗ is the gene frequency at which 𝑟𝐵 − 𝐶 = 0 (Extended Data Fig. E1). The equilibrium frequency 

around which the population is expected to fluctuate over the long run, 𝑝′, is equal to 𝑝∗ when the 

changes in gene frequency that occur each generation are small and the sign changes from 𝑟𝐵 > 𝐶 below 

𝑝∗ to 𝑟𝐵 < 𝐶 above 𝑝∗ (Extended Data Fig. E1c). The first condition reduces displacement from 

equilibrium: when the population takes extreme leaps in gene frequency each generation, gene 

frequencies can enter random cycles for which 𝑝∗ is not the midpoint (𝑝∗ ≠ 𝑝′), as gene frequency moves 

between extremely different values at which the slope of selection differs. Under a regime of weak 

selection, 𝑝∗ = 𝑝′.  

 

B4 | Effects of chance and autocorrelation in the fluctuating environment 

Even if both states are equally probable, the environment may by chance have a run of several good or 

several bad states. At the predicted equilibrium 𝑝∗, the change Δ�̅� from a good state is exactly opposite 

to the change from a bad state, so the expected change in average genetic value is zero (𝔼𝜋[Δ�̅�] = 0). 

However, the magnitude of the effect is important. If the two types of change Δ�̅� have a very large effect, 

the frequency of altruists may alter rapidly due to a chance sequence of many of the same states: a chance 

run of five bad years, for instance, might cause one genotype to crash completely. Sustained runs of the 

same environmental state are more probable when the environment fluctuates in a temporally 

autocorrelated fashion. 

A stochastic population is predicted to occupy its polymorphic position 𝑝∗ when 𝕍𝜋[Δ�̅�] ≈ 0 (i.e. 

𝕍𝜋 [ℂ𝑥 [𝐺𝑥,
𝑤𝑥

�̅�
]] ≈ 0) and 𝑝∗ is convergence-stable (i.e. the frequency-dependent stochasticity 

coefficient 𝜈 favours altruists at frequencies 𝑝𝑡 below 𝑝∗ but selects against it above). Since selection 

favours altruists when 𝑣(𝑟𝑏𝜎 − 𝑐𝜎) > 𝑐𝜇 − 𝑟𝑏𝜇, as long as (𝑟𝑏𝜎 − 𝑐𝜎) > 0 we can divide by (𝑟𝑏𝜎 − 𝑐𝜎) 

without changing the sign of the inequality to find the conditions for a globally convergence-stable 

population in terms of the magnitude of the stochasticity coefficient 𝑣 at a given frequency 𝑝𝑡 (denoted 

𝑣𝑝𝑡
):

𝑝𝑡 < 𝑝∗ ⟹ 𝜈𝑝𝑡
>

𝑐𝜇−𝑟𝑏𝜇

𝑟𝑏𝜎−𝑐𝜎

𝑝𝑡 > 𝑝∗ ⟹ 𝜈𝑝𝑡
<

𝑐𝜇−𝑟𝑏𝜇

𝑟𝑏𝜎−𝑐𝜎

(𝐵26) 

In the individual-based simulation, we focus on weak selection, where only 1% of the population’s 

genotype frequencies are available to change each generation. Under weak selection, even high levels of 
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temporal autocorrelation (leading to frequent runs of the same environmental states across years) do not 

necessarily deter the population from its convergence point. In general, we emphasise that the Price 

equation – and its derivation, Hamilton’s rule – focuses on generational changes: accordingly, both the 

non-stochastic version familiarly used in the literature and the stochastic version presented here can 

predict the frequency at which there is no change or no expected change (respectively) due to selection. 

Under appropriate conditions, including low-amplitude fluctuations in allele frequency between 

generations, this frequency will be realised as an equilibrium state for the population; outside these 

conditions, the frequency at which there is no expected change due to selection need not represent an 

equilibrium state.  

 

B5 | Inducible altruism  

An actor in a fluctuating environment does not necessarily need to produce a ‘constitutive’ strategy (e.g. 

help in all states or defect in all states). If the actor possesses information about the current state 𝜋, it 

may be able to tailor its response to produce an optimal strategy for the given state. In principle, this form 

of phenotypic plasticity may produce ‘inducible’ altruism in a stochastic world: help relatives if you know 

that a drought is imminent, for instance. In this section, we show how the reliability of information in a 

stochastic world determines whether cooperation should be constitutive or inducible. 

We introduce to the population a plastic allele 𝐼, such that there are three alleles in competition: 

𝑆: ‘Selfish’: carriers never cooperate 

𝐶: ‘Constitutive cooperator’: carriers cooperate in all states 

𝐼: ‘Inducible cooperator’: carriers cooperate only when they believe they are in the ‘bad’ state 

These alleles have frequencies 𝑝𝑆, 𝑝𝐶, and 𝑝𝐼 respectively (i.e. 𝑝𝑆 + 𝑝𝐶 + 𝑝𝐼 = 1). 

Let an act of cooperation incur a cost 𝑐 to the actor’s fecundity. In ‘bad’ states (such as drought), 

receiving cooperation increases an individual’s fecundity by 𝛿+. In ‘good’ states, we allow the presence 

of a cooperator to be detrimental to the recipient’s fecundity: the cooperator reduces recipient fecundity 

by 𝛿− (note that 𝛿− can equal zero, or even be negative if the co-operator always benefits the recipient). 

Let the plastic allele 𝐼 pay an additional cost (𝑐𝑝𝑙𝑎𝑠𝑡𝑖𝑐) as the ‘cost of plasticity’, determined by both the 

costs of information gathering and utilisation and the costs of maintaining behavioural flexibility. The 

quality of the information available to carriers of the plastic allele is determined by its accuracy 𝐴: the 

environmental state 𝜋 is what the actor thinks it is with probability 𝐴. 

The frequency of each type of pairing is as follows (Supplementary Table B2): 
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Supplementary Table B2 | Frequencies of interactions 

Genotype of focal 

individual 𝑥 

(allele carried) 

Genotype of partner 

individual 𝑦 

(allele carried) 

Frequency 

(𝐹𝑥𝑦) 

𝐼 𝐼 𝑝𝐼
2 + 𝛼𝑝𝐼(1 − 𝑝𝐼) 

𝐼 𝑆 (1 − 𝛼)𝑝𝐼𝑝𝑆 

𝐼 𝐶 (1 − 𝛼)𝑝𝐼𝑝𝐶  

𝑆 𝐼 (1 − 𝛼)𝑝𝑆𝑝𝐼  

𝑆 𝑆 𝑝𝑆
2 + 𝛼𝑝𝑆(1 − 𝑝𝑆) 

𝑆 𝐶 (1 − 𝛼)𝑝𝑆𝑝𝐶  

𝐶 𝐼 (1 − 𝛼)𝑝𝐶𝑝𝐼  

𝐶 𝑆 (1 − 𝛼)𝑝𝐶𝑝𝑆 

𝐶 𝐶 𝑝𝐶
2 + 𝛼𝑝𝐶(1 − 𝑝𝐶 ) 

 

We can define the fecundity of each of the types of focal individual described in Supplementary Table 

B2 as follows (Supplementary Table B3): 

Supplementary Table B3 | Fecundities of types of focal individual 

Focal 

individual 

𝑥 

Partner 

𝑦 

Fecundity in good years 

 (𝐺𝑜𝑜𝑑𝑥𝑦) 

Fecundity in bad years 

(𝐵𝑎𝑑𝑥𝑦) 

𝐼 𝐼 𝐴𝑧1 + (1 − 𝐴)(𝑧1 − 𝑐 − 𝛿−) − 𝑐𝑝𝑙𝑎𝑠𝑡𝑖𝑐  𝐴(𝑧2 − 𝑐 + 𝛿+) + (1 − 𝐴)𝑧2 − 𝑐𝑝𝑙𝑎𝑠𝑡𝑖𝑐  

𝐼 𝑆 𝐴𝑧1 + (1 − 𝐴)(𝑧1 − 𝑐) − 𝑐𝑝𝑙𝑎𝑠𝑡𝑖𝑐  𝐴(𝑧2 − 𝑐) + (1 − 𝐴)𝑧2 − 𝑐𝑝𝑙𝑎𝑠𝑡𝑖𝑐  

𝐼 𝐶 𝐴(𝑧1 − 𝛿−) + (1 − 𝐴)(𝑧1 − 𝑐 − 𝛿−)

− 𝑐𝑝𝑙𝑎𝑠𝑡𝑖𝑐  

𝐴(𝑧2 + 𝛿+ − 𝑐) + (1 − 𝐴)(𝑧2 + 𝛿+)

− 𝑐𝑝𝑙𝑎𝑠𝑡𝑖𝑐  

𝑆 𝐼 𝐴𝑧1 + (1 − 𝐴)(𝑧1 − 𝛿−) 𝐴(𝑧2 + 𝛿+) + (1 − 𝐴)𝑧2 

𝑆 𝑆 𝑧1 𝑧2 

𝑆 𝐶 𝑧1 − 𝛿− 𝑧2 + 𝛿+ 

𝐶 𝐼 𝐴(𝑧1 − 𝑐) + (1 − 𝐴)(𝑧1 − 𝑐 − 𝛿−) 𝐴(𝑧2 + 𝛿+ − 𝑐) + (1 − 𝐴)(𝑧2 − 𝑐) 

𝐶 𝑆 𝑧1 − 𝑐 𝑧2 − 𝑐 

𝐶 𝐶 𝑧1 − 𝑐 − 𝛿− 𝑧2 − 𝑐 + 𝛿+ 

 

In Fig. 4 of the main text, we plot the expected direction of change in allele frequency under selection 

for this population. Note that the stochastic Hamilton’s rule identifies the points in frequency space 

{𝑝𝑆, 𝑝𝐶 , 𝑝𝐼} at which each allele is expected to increase in frequency under selection. 
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An instructive empirical example is found in the temperate paper wasp Polistes annularis: field data for 

foundresses suggest that inclusive fitness is positive in a ‘bad’ state (characterised by drought) but 

negative in a ‘good’ state (when drought is absent)46. The existence of cooperative foundress groups in 

the ‘good’ state, when cooperation is predicted to be deleterious, implies that foundresses do not take 

up the theoretically-plausible option of being socially-plastic ‘bad-year specialists’. In general, constitutive 

cooperation (cooperation in all states) can outcompete plastic cooperation (‘bad-year specialists’) when 

information is insufficiently reliable or the costs of plasticity are too high. 
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Appendix C | Feasibility of 𝑏𝜎 > 0 

 

Hamilton’s rule is predictive in the sense that it provides a falsifiable criterion to be applied to any 

specific hypothesis: a proposed combination of measured fitness effects must conform to the rule if they 

are to explain a given adaptation. In this section, we explore the potential for 𝑏𝜎 effects in social evolution. 

In the main text and Appendix A, we highlight that the magnitude of 𝑣 depends on the extent to which 

environmental fluctuations are correlated across patches in a matrix or metapopulation, and the extent 

to which temporal fluctuations within the organism’s reproductive lifespan are correlated. Our intention 

here is to highlight the feasibility of 𝑏𝜎-driven sociality, in principle, in the real world; at present, empirical 

data on the direct links between stochasticity and sociality are sparse. Direct empirical tests of the 

principle should aim to quantify the factors influencing 𝑣. 

 

C1 | Elimination of parasite pressure 

Recently, Rehan et al.28 have found that observed mean fecundity effects (𝑟𝑏𝜇 − 𝑐) are unable to explain 

the evolution of cooperation between sisters (𝑟 = 0.75) in a facultatively social bee (Ceratina 

australensis). This species inhabits a fluctuating environment, and Rehan et al.38 have previously 

suggested that bet-hedging could drive the evolution of cooperation: parasite numbers rise and fall 

between generations, generating ‘periods of extreme parasite pressure’38, but social nests are better able 

to evade brood loss to parasites. Bees may be effectively blind to environmental state (ambient level of 

brood loss to parasitism), since parasitoid activity38 occurs only once larvae and pupae are available for 

ovipositing. Whether pupae have been parasitized may be essentially unknowable, as they are sealed 

within the stem nest. 

In this section, we model the evolution of sister-to-sister cooperation in a fluctuating world. Although 

we necessarily remain agnostic about the drivers of cooperation in the particular species C. australensis, 

we show that, in principle, highly stochastic environments (high v) can be more hospitable than static 

environments for sister–sister cooperation in such species when sociality buffers parasite pressure. 

We obtain matching results through an individual-based haplodiploid simulation and an application of 

Inequality (A25) to the life-history parameters of Supplementary Table C1. To simplify the interpretation, 

we first consider a single diallelic haploid locus, with assortment following Gardner et al.1: individuals are 

matched with a social partner identical at the focal locus with probability 𝛼 and a random partner with 

probability 1 − 𝛼. This obtains 𝑟 = 𝛼, which allows us to set 𝛼 = 0.75 to recover assortment levels 
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between haplodiploid sisters. We let the environment fluctuate between high and low parasite states; a 

solitary individual has 𝑧𝐺 offspring in a ‘good year’ (low parasite pressure) and 𝑧𝐵 offspring in a ‘bad year’ 

(high parasite pressure, 𝑧𝐵 < 𝑧𝐺). We let the presence of social partners buffer the breeder from parasite 

pressure, so that breeders with helpers attain 𝑧𝐺 offspring regardless of environmental state. 

Supplementary Table C1| Life history 

𝐺𝑥 𝐺𝑦 Power Result Frequency in the 

population of this focal 

individual 

Mean fecundity (across 

environmental states) of 

focal individual 

Standard deviation (across environmental states) 

of focal individual’s fecundity 

1 1 Dominant 

  

Queen 1

2
(𝑝2 + 𝛼𝑝(1 − 𝑝)) 𝑧𝐺  0 

1 1 Subordinate Worker 1

2
(𝑝2 + 𝛼𝑝(1 − 𝑝)) 0 0 

1 0 Dominant  Solitary 1

2
(1 − 𝛼)𝑝(1 − 𝑝) 𝑑𝑧𝐺 + (1 − 𝑑)𝑧𝐵 √𝑑(1 − 𝑑)(𝑧𝐺 − 𝑧𝐵)2 

1 0 Subordinate Worker 1

2
(1 − 𝛼)𝑝(1 − 𝑝) 0 0 

0 1 Dominant Queen 1

2
(1 − 𝛼)𝑝(1 − 𝑝) 𝑧𝐺  0 

0 1 Subordinate Solitary 1

2
(1 − 𝛼)𝑝(1 − 𝑝) 𝑑𝑧𝐺 + (1 − 𝑑)𝑧𝐵 √𝑑(1 − 𝑑)(𝑧𝐺 − 𝑧𝐵)2 

0 0 Dominant  Solitary 1

2
((1 − 𝑝)2 + 𝛼𝑝(1 − 𝑝)) 𝑑𝑧𝐺 + (1 − 𝑑)𝑧𝐵 √𝑑(1 − 𝑑)(𝑧𝐺 − 𝑧𝐵)2 

0 0 Subordinate Solitary 1

2
((1 − 𝑝)2 + 𝛼𝑝(1 − 𝑝)) 𝑑𝑧𝐺 + (1 − 𝑑)𝑧𝐵 √𝑑(1 − 𝑑)(𝑧𝐺 − 𝑧𝐵)2 

 

Solving for the coefficients in Inequality (2) of the main text obtains the following, where 𝜇⦁ and 𝜎⦁ are 

the average and standard deviation respectively (across the two states) of a solitary individual’s number 

of offspring. Detail about obtaining regression coefficients for social effects is provided in Appendix B. 

𝑏𝜇 =
(1 − 𝑑)(𝑧𝐺 − 𝑧𝐵)

2
(𝐶1𝑎) 

𝑐𝜇 =
𝜇⦁ 

2
(𝐶1𝑏) 

𝑏𝜎 =
𝜎⦁

2
(𝐶1𝑐) 

𝑐𝜎 = −
𝜎⦁

2
(𝐶1𝑑) 

The means-based Hamilton’s rule implies that cooperation will not evolve by mean fecundity effects 

alone for this system. The condition for the evolution of altruism by mean fecundity effects is: 

𝑟(1 − 𝑑)(𝑧𝐺 − 𝑧𝐵) > 𝜇⦁ (𝐶2) 

When high-parasite and low-parasite years occur with equal frequency (𝑑 = 0.5), the critical ratio of 

𝑧𝐺: 𝑧𝐵 (=
(1−𝑑)(1+𝑟)

(1−𝑑)𝑟−𝑑
) is negative: even with helpers conferring substantial gains in fecundity on breeders 

in high-parasite years (Table B1), cooperation cannot evolve by mean fecundity effects. When low-
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parasite states occur in 40% of years (𝑑 = 0.4), cooperation only evolves due to mean fecundity effects 

if individuals have at least 21 times more offspring without parasites than with parasites.  

However, incorporating volatility effects increases the scope for cooperation when the environment is 

stochastic (high 𝑣):  

𝑟((1 − 𝑑)(𝑧𝐺 − 𝑧𝐵) + 𝑣 ⋅ 𝜎⦁) > 𝜇⦁ − 𝑣 ⋅ 𝜎⦁ (𝐶3) 

In Fig. 3 of the main text, we illustrate this increased scope for the evolution of cooperation, both in 

terms of Inequality (A25) and individual-based simulation. For instance, whilst equal frequencies of high- 

and low-parasite years are unable to sustain cooperation by mean fecundity effects at any level of 𝑧𝐺 and 

𝑧𝐵, Fig. 3a reveals a high-stochasticity region in which cooperation invades a solitary population due to 

volatility effects. The 21-fold difference in fecundity between high-parasite and low-parasite states 

required for the evolution of cooperation by mean fecundity effects when low-parasite states occur in 

40% of years shrinks to a 3-fold difference with the addition of volatility effects. Volatility effects can, 

accordingly, extend the region of the adaptive landscape in which social traits evolve, and in principle 

reduce the gap between 𝐵 and 𝐶 in paradoxical cases where Hamilton’s rule appears to fail. Not all social 

species evolve from solitary ancestors inhabiting a highly stochastic world, but those that do may in 

principle obtain hidden 𝑏𝜎 and 𝑐𝜎 effects that increase the payoff from cooperation. Note that when high-

parasite states are very frequent, 𝑏𝜇 effects rise in power: when parasites constantly threaten the 

population, and helpers eliminate parasite pressure, mean fecundity is increased; in this situation, the 

environment is no longer stochastic (low 𝑣). Incorporating volatility effects means that cooperation can 

still evolve when high-parasite states are not extremely frequent.  

 

C2 | Galapagos mockingbirds 

Empirical data are sorely lacking for testing the effects of 𝑏𝜎. One encouraging dataset, however, comes 

from the cooperatively breeding Galapagos mockingbird (Mimus parvulus). Curry and Grant47 recorded 

demographic information over an 11-year period on Isla Genovesa (Ecuador). Helping is polymorphic in 

M. parvulus (occurring at 34% of nests), allowing a comparison of cooperative and non-cooperative 

nesting attempts.  

Using the relevant summary statistics in Curry and Grant47 (based on 153 helper-present nests and 297 

helper-absent nests), we estimate partial regressions of expected recipient fecundity against actor 

phenotype (helper or non-helper). We play the ‘phenotypic gambit’, and adopt a phenotypic (as opposed 

to genotype) variant of the stochastic Hamilton’s rule. We therefore regress fitness components against 
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the focal individual’s phenotype 𝑃𝑥 and the phenotype of a social partner 𝑃𝑦, and we assign the 

phenotypic values 0 and 1 for non-helping and helping respectively: 

𝑏𝜇 = 𝛽𝔼𝜋[𝑤𝑥],𝑃𝑦
= 0.3 (𝐶6) 

Sample size varies considerably between years (from two helper-attended nests in 1984 to 33 in 1987). 

We cannot calculate 𝑏𝜎 directly from the data, therefore, as we cannot distinguish ‘true’ population 

variance from sampling variance. Instead, our approach is to ask whether a 𝑏𝜎 component can 

significantly change the estimated benefits of cooperation.  

Galapagos mockingbirds inhabit a stochastic environment: Curry and Grant47 report a coefficient of 

variation in fledgling production of 0.92 across years, a proxy for the coefficient of variation in average 

reproductive success (𝜈 =
𝜎𝜋[�̅�]

𝔼𝜋[�̅�]
) across states of nature. We assume that helping has no effect on the 

volatility of the helper’s own reproductive success (𝑐𝜎 = 0), and we consider the payoff for a sibling 

helper-at-the-nest (𝑟 = 0.5): 

0.5(0.3 + 0.92𝑏𝜎) > 𝑐𝜇 (𝐶7) 

The cost of cooperation remains to be quantified in M. parvulus. If helpers suffer a loss of expected 

reproductive success exactly equal to the amount they increase the reproductive success of their 

recipients (i.e. 𝑐𝜇 = 𝑏𝜇 = 0.3), then (to two decimal places): 

𝑏𝜎 > 0.33 (𝐶8) 

The regression of recipient fecundity volatility against actor phenotype (𝛽𝜌𝑥𝜎𝜋[𝑤𝑥],𝑃𝑦
) must have a slope 

of at least −0.33 to justify altruism if 𝑏𝜇 − 𝑐𝜇 = 0. The upshot is that, in principle, 𝑏𝜎 can provide missing 

components of 𝐵 in a sufficiently stochastic environment. Conclusively demonstrating altruistic bet-

hedging in Galapagos mockingbirds will require (as with any empirical test of such models) elucidating 

how mockingbird-specific demography and population structure determines the relation between 

phenotype and the separate components of fitness.  

Risk plays an important role in behavioural ecology. A stochastic approach is useful even if risk-

management strategies affect the mean reproductive successes40 of actors or their social partners (𝑐𝜇 

and 𝑏𝜇 respectively) without affecting the reproductive variation of either individual. In the social insects, 

for instance, the so-called ‘Wenzel-Pickering effect’ proposes that larger groups are able to reduce the 

variation in the supply of food for the brood, preventing shortfalls in which brood would otherwise die27,48. 

Whether the Wenzel-Pickering effect in real organisms derives its benefit from a consequent reduction 

in the variation of the production of offspring13 (𝑏𝜎 > 0), an increase in mean offspring production48 

(𝑏𝜇 > 0), or a combination of both (𝑏𝜇 > 0 and 𝑏𝜎 > 0) remains unknown. Similarly, in the mockingbirds, 
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nesting attempts may be more ‘risky’ in a given state 𝜋: this risk may mean that only a proportion of nests 

will succeed. This more proximate form of ‘risk’ differing between years influences the payoffs from social 

behaviour in each type of year, and therefore can affect both expected fecundity and the volatility of 

fecundity across states. Classifying benefits accruing to different statistical parameters in the stochastic 

Hamilton’s rule offers a framework for diagnosing these diverse forms of risk-management benefits and 

costs. 
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